Subscribe free to our newsletters via your
. GPS News .




ENERGY TECH
How does a machine smell? Better than it did
by Staff Writers
Manchester, UK (SPX) Jan 20, 2015


File image.

Every odour has its own specific pattern which our noses are able to identify. Using a combination of proteins coupled to transistors, for the first time machines are able to differentiate smells that are mirror images of each other, so called chiral molecules, something that has not been possible before.

The human nose can distinguish between some of these molecules and the different forms of the same molecule of carvone, for example, can smell either like spearmint or caraway. Previous machines would not have been able to distinguish between the two.

The development will allow the creation of a new generation of biosensors with an acute ability to sniff out problems. These could have many industrial uses such as telling when food has gone off, and they could even be accurate enough to smell how much pollution is in the atmosphere.

A collaboration of academics from The University of Manchester and the University of Bari in Italy, have created a biosensor that utilises an odorant binding protein. The team's findings are published in the journal Nature Communications.

Odorant binding proteins are found in the mucus of the nose, which work olfactory receptors helping us to create our perception of smell. The team have found a method of manufacturing these proteins in quantities that would allow them to be used in biosensors.

They have developed methods to change the way the proteins react so that they can recognise different types of chemicals. Using a type of transistor incorporating these proteins the scientists were able to measure the unique changes in current as the proteins reacted to odours, and record them. This is in effect the machine smelling the odour and then sending the message, which can then be decoded.

The system is incredibly sensitive with a detection limit that approaches that of the human nose.

Professor Krishna Persaud, lead author of the paper at The University of Manchester, said: "It has been challenging to get machines to be able to differentiate between smells that are mirror images of each other, which was a real barrier to creating machines which are able to smell as well or better than humans.

"Using the expertise of our colleagues at the University of Bari to couple these proteins to field effect transistors has allowed us to produce a new chemical sensor platform. Now we have done this it will allow much better sensors to be developed and these could have many uses in industry. We shall be able to create biosensors which are accurate enough to be able to tell when food has gone off, or even smell how much pollution is in the atmosphere."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Manchester
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
New superconducting hybrid crystals developed at Copenhagen
Copenhagen, Denmark (SPX) Jan 13, 2015
A new type of 'nanowire' crystals that fuses semiconducting and metallic materials on the atomic scale could lay the foundation for future semiconducting electronics. Researchers at the University of Copenhagen are behind the breakthrough, which has great potential. The development and quality of extremely small electronic circuits are critical to how and how well future computers and othe ... read more


ENERGY TECH
Chitosan, a sustainable alternative for food packaging

Brazil coffee production struggles after drought

EU lawmakers pass controversial GMO food law

Taiwan culls 6,000 more geese to curb bird flu outbreak

ENERGY TECH
Toward quantum chips

Quantum optical hard drive breakthrough

Know when to fold 'em

Shedding light on why blue LEDS are so tricky to make

ENERGY TECH
How prepared is your pilot to deal with an emergency?

Singapore navy finds main body of crashed AirAsia jet

Philippines buying C-130s from U.S. for security, disaster relief

Boeing delivers new F-22 flight simulators

ENERGY TECH
Congestion expected after Toyota green car orders soar

China taxi booking app raises $600 mn for expansion

Peugeot sales power ahead; China now biggest market

From Rovers to Self-Driving Cars

ENERGY TECH
Silicon Valley firms ink settlement in non-poaching case

Canada to host NAFTA summit 'later this year'

Uniqlo pledges to improve factory conditions in China

China 2014 trade surplus rockets to record high: govt

ENERGY TECH
Gold mining devours S.American forest land: study

Salvaging the ecosystem after salvage logging

NASA Finds Good News on Forests and Carbon Dioxide

European fire ant impacts forest ecosystems by helping alien plants spread

ENERGY TECH
Airbus Defence and Space, TerraNIS and ARTAL Technologies join forces

First satellite visible imagery of FY-2G successfully acquired

Rivers Are Draining Greenland Quickly: NASA-UCLA

ISS-RapidScat looks at the winds in US east coast's 'wind chill'

ENERGY TECH
Revealing the inner workings of a molecular motor

New technology focuses diffuse light inside living tissue

Mysteries of 'molecular machines' revealed

Dartmouth researchers create 'green' process to reduce molecular switching waste




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.