GPS News  
TIME AND SPACE
How black holes power plasma jets
by Staff Writers
New York NY (SPX) Jan 30, 2019

Spinning black holes can launch beams of particles moving at nearly the speed of light. New simulations reveal the processes that draw on a black hole's rotational energy to give the particles a boost.

Black holes consume everything that falls within their reach, yet astronomers have spotted jets of particles fleeing from black holes at nearly the speed of light. New computer simulations have revealed what gives these particles such speed: cosmic robbery.

The particle escapees steal some of the spinning black hole's rotational energy, accomplishing this through two main mechanisms involving magnetic fields, the simulations' creators report in the January 25 issue of Physical Review Letters.

As a black hole spins, its dense mass distorts and twists the surrounding fabric of space and time. The simulations show that magnetic fields at the poles of the black hole become coiled and spring outward, flinging jets of particles into space. At the equator, magnetic fields collapse into clumps. This tangling creates areas that act like particle accelerators, boosting some particles into the edges of polar jets at high speeds and others into the maw of the black hole.

The results are the most detailed look yet at the processes that power a black hole's jets, according to study co-author Alexander Philippov, an associate research scientist at the Flatiron Institute's Center for Computational Astrophysics in New York City. "No one has been able to push these simulations so hard in curved space-time," says Philippov, who worked on the project alongside Kyle Parfrey of Lawrence Berkeley National Laboratory and Benoit Cerutti of the Universite Grenoble Alpes in France.

Upcoming data releases from observational missions such as the Event Horizon Telescope will put the simulations to the test, Philippov says. That telescope focuses on the supermassive black hole that inhabits the heart of the Milky Way galaxy and is designed to capture images of the regions where the jet forms.

Tracking the formation of jets is tricky because of the complexity of the physics involved. Black holes bend space-time and generate powerful magnetic fields. Particles on the outskirts of the black hole zip around untethered from atoms in a state of matter called plasma. New particles can pop into existence, such as pairs of electrons and their antimatter doppelgangers known as positrons.

Previous attempts to understand the source of a black hole's jets used a simplified model of plasma. Parfrey, Philippov and Cerutti instead employed new numerical techniques that provide the first representation of collisionless plasma around a black hole. In a collisionless plasma, individual particles don't bump into each other often enough to be treated uniformly and represented simplistically.

The new simulations begin with a spinning black hole surrounded by intense magnetic fields. Around the fringes of the black hole, the simulations create pairs of electrons and positrons. Because these particles have an electric charge, they are pulled along by electromagnetic fields.

As the simulations progress, a previously predicted mechanism called the Blandford-Znajek process occurs near the north and south poles. During this process, the black hole twirls the fabric of space-time. This distortion twists the magnetic fields into coils near the poles. These coils then spring outward into space like a jack-in-the-box, extracting spin energy from the black hole and launching jets of particles.

Near the black hole's midsection, a different and unexpected particle-boosting mechanism appears. Magnetic field lines operating in opposing directions like a two-lane highway meet at the equator. This congregation causes the lines to twist and tangle. In the space between these bundles, the magnetic field is relatively weak compared with the black hole's electric field.

The electric field, now the strongest force at play, accelerates particles. Some fly outward, following a curved trajectory into the peripheries of the polar jets. Others speed into the black hole. From afar, the descending particles appear to have negative energy. As the black hole eats them, the black hole loses a bit of its rotational energy in what's called the Penrose process.

Overall, the simulations suggest that roughly 80 percent of the jet's energy comes from the corkscrewing magnetic field at the poles, with the remaining 20 percent originating from the particles accelerated near the equator.

The researchers hope to further hone their simulations by adding a more realistic portrayal of when and how electron-positron pairs appear around a black hole. They also plan to model the flow of material crossing the black hole's event horizon.

Research paper


Related Links
http://www.simonsfoundation.org/
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
How to escape a black hole
Berkeley CA (SPX) Jan 25, 2019
Black holes are known for their voracious appetites, binging on matter with such ferocity that not even light can escape once it's swallowed up. Less understood, though, is how black holes purge energy locked up in their rotation, jetting near-light-speed plasmas into space to opposite sides in one of the most powerful displays in the universe. These jets can extend outward for millions of light years. New simulations led by researchers working at the Department of Energy's Lawrence Berkeley ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
'Radical rethink' needed to tackle obesity, hunger, climate: report

Plants can smell, now researchers know how

Farm manure boosts greenhouse gas emissions even in winter

Ecological benefits of part-night lighting revealed

TIME AND SPACE
Innovative technique could pave way for new generation of flexible electronic components

Semiconductors combine forces in photocatalysis

Breakthrough reported in fabricating nanochips

Novel strategy enables tiny semiconductor particles for wide-ranging applications

TIME AND SPACE
Davos forum hits turbulence over CEOs' private jets

Gulfstream tapped for C-20, C-37 fleet support

Boeing awarded $2.46B for P-8A patrol planes for U.S., U.K., Norway

Air Force accepts first two KC-46 tanker planes from Boeing

TIME AND SPACE
Apple puts brakes on car team but keeps eye on road

Boeing flying car prototype completes first test flight

Ford reports 4Q loss on weakness in China, Europe

Tesla recalls 14,000 cars in China over Takata airbags

TIME AND SPACE
Trump to meet Chinese vice premier in trade talks

WTO to probe Trump's China tariffs

China's top trade negotiator arrives in US for talks

Businesses struggle as cracks appear in China's economy

TIME AND SPACE
How much rainforest do birds need?

Study predicts how air pollutants from US forest soils will increase with climate change

Yellowstone's forests could be grassland in just a few decades

Mangrove patches deserve greater recognition no matter the size

TIME AND SPACE
Russia to launch Arctic weather satellite

Satellogic signs agreement with CGWIC to launch earth observation constellation of 90 satellites

Researchers develop new zoning tool that provides global topographic datasets in minutes

UK Space Agency COMPASS project aims to to improve crop yields for Mexican farmers

TIME AND SPACE
Platinum forms nano-bubbles

Aerosol-assisted biosynthesis strategy enables functional bulk nanocomposites

New applications for encapsulated nanoparticles with promising properties

Chemical synthesis of nanotubes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.