GPS News  
EPIDEMICS
How a virus forms its symmetric shells
by Staff Writers
Riverside CA (SPX) Mar 23, 2020

clearly of bad character.

Viruses - small disease-causing parasites that can infect all types of life forms - have been well studied, but many mysteries linger. One such mystery is how a spherical virus circumvents energy barriers to form symmetric shells.

A research team led by physicist Roya Zandi at the University of California, Riverside, has made progress is solving this mystery. The team reports in a paper published in ACS Nano that an interplay of energies at the molecular level makes the formation of a shell possible.

Understanding the factors that contribute to viral assembly could enable biomedical attempts to block viral replication and infection. A better understanding of how viral shells - nature's nano-containers - form is of vital importance to material scientists and a crucial step in the design of engineered nano-shells that could serve as vehicles for delivering drugs to specific targets in the body.

Zandi's team explored the role of protein concentration and elastic energy in the self-organization of proteins on the curved shell surface to understand how a virus circumvents many energy barriers.

"Understanding the combined effect of elastic energy, genome-protein interaction, and protein concentration in the viral assembly constitutes the breakthrough of our work," said Zandi, a professor in the Department of Physics and Astronomy. "Our study shows that if a messy shell forms because of the high protein concentration or strong attractive interaction, then, as the shell grows larger, the cost of elastic energy becomes so high that several bonds can get broken, resulting in the disassembly and subsequent reassembly of a symmetric shell."

What is a virus?
The simplest physical object in biology, a virus consists of a protein shell called the capsid, which protects its nucleic acid genome - RNA or DNA. Viruses can be thought of as mobile containers of RNA or DNA that insert their genetic material into living cells. They then take over the cells' reproductive machinery to reproduce their own genome and capsid.

Capsid formation is one of the most crucial steps in the process of viral infection. The capsid can be cylindrical or conical in shape, but more commonly it assumes an icosahedral structure, like a soccer ball.

An icosahedron is a geometrical structure with 12 vertices, 20 faces, and 30 sides. An official soccer ball is a kind of icosahedron called a truncated icosahedron; it has 32 panels cut into the shape of 20 hexagons and 12 pentagons, with the pentagons separated from each other by hexagons.

Viral assembly is not well understood because viruses are very small, measuring in nanometers, a nanometer being one-billionth of a meter. The assembly also happens very quickly, typically in milliseconds, a millisecond being one-thousandth of a second. Theoretical work and simulations are necessary to understand how a virus grows.

"A viral shell is highly symmetric," Zandi said. "If one pentagonal defect forms in the wrong location, it breaks down the symmetry. Despite this sensitivity, viral shells are often assembled into well-defined symmetric structures."

Nano vehicles
Zandi explained that due to a lack of experimental data, the virus assembly process is not well understood. The new work found the elastic properties of capsid proteins and the attractive interaction between them go hand in hand to form highly symmetric configurations that are energetically very stable.

"By fine-tuning these parameters, we can control the final structure and stability of viral capsids," she said. "These viral capsids can be used as nano-containers for transporting drugs as cargo to specific targets. What makes them highly promising for drug delivery and gene delivery purposes is that they are stable, have a high uptake efficiency, and have low toxicity."

Already, some experimental groups are working with pharmaceutical companies to design drugs that interfere or block viral assembly. Her lab is working with international collaborators to design simulations to better understand virus assembly.

"Understanding the factors that affect the stability of the final viral structures can make drug delivery processes more controllable," she said.

Research paper


Related Links
University Of California - Riverside
Epidemics on Earth - Bird Flu, HIV/AIDS, Ebola


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EPIDEMICS
As world cowers, China glimpses coronavirus aftermath
Shanghai (AFP) March 18, 2020
Restaurants are reopening, traffic and factories are stirring, and in one of the clearest signs yet that China is awakening from its coronavirus coma, the country's "dancing aunties" are once again gathering in parks and squares. As the rest of the world runs for cover, China - where the virus first emerged - is moving, guardedly, in the opposite direction as domestic infections fall to nil following unprecedented lockdowns and travel restrictions. But ordinary life is far from normal. Mas ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EPIDEMICS
Crop diversity can help fight climate change, new study shows

Comparisons of organic and conventional agriculture need to be better, say researchers

Urban land could grow fruit and veg for 15 per cent of the population, research shows

Kenya bans controversial donkey slaughter trade

EPIDEMICS
Semiconductors can behave like metals and even like superconductors

New error correction method provides key step toward quantum computing

The ink of the future in printed electronics

A small step for atoms, a giant leap for microelectronics

EPIDEMICS
Wealthy flock to private jets as pandemic spreads and airlines tank

X-59 QueSST more than the sum of its parts

Optimised flight routes for climate-friendly air transport

Transportation Command head questions Air Force's plan for refueler upgrades

EPIDEMICS
Uber shares surge after citing signs of rebound from virus slump

Volvo Cars halts Europe, US productio

Tesla resumes work on German plant after court ruling

Driver's-ed-inspired system could make automated parallel parking more accessible

EPIDEMICS
Markets rally on huge economic support plan

US leads massive economic stimulus effort against coronavirus, EU shuts borders

Italy pushes 'coronabonds' to fight financial doom

Japan's imports from China plunged in February on virus woes

EPIDEMICS
Bushfires burned a fifth of Australia's forest: study

Close to tipping point, Amazon could collapse in 50 years

Protecting flood-controlling mangrove forests pays for itself

Burned area trends in the Amazon similar to previous years

EPIDEMICS
More reliable rainfall forecasts for South Asian summer monsoons in coming decades

China's polar-observing satellite completes Antarctic mission

Observing animal migration from space - ISS experiment ICARUS begins

Kleos Data to Target Environmental Challenges in Brazil

EPIDEMICS
New DNA origami motor breaks speed record for nano machines

Deep-sea osmolyte makes biomolecular machines heat-tolerant

Nanobubbles in nanodroplets

New production method for carbon nanotubes gets green light









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.