GPS News  
Hotter Than Expected Neutron Star Surfaces Help Explain Superburst Frequency

Neutron star accreting matter from a red giant star. The red giant is expanding and dumping material onto the neutron star. This material forms a disk and then finally falls to the neutron star surface. Credit: Tony Piro, U.C. Berkeley
by Staff Writers
East Lansing MI (SPX) Apr 16, 2007
A new theoretical thermometer built from heavy-duty mathematics and computer code suggests that the surfaces of certain neutron stars run significantly hotter than previously expected. Hot enough, in fact, to at least partially answer an open question in astrophysics -- how to explain the observed frequency of ultra-violent explosions known as superbursts that sometimes ignite on such stars' surfaces?

"This is the first model that goes into some reasonable detail about the nuclear physics that occur in the crusts of accreting neutron stars," said Hendrik Schatz, NSCL professor and co-author of a paper that will be published in The Astrophysical Journal in June. One of Schatz's co-authors, NSCL assistant professor Ed Brown, will present the results April 17 at a meeting of the American Physical Society in Jacksonville, Fla.

Superbursts emanate from binary systems in which a neutron star orbits a companion star. When the two stars get close enough together, a steady rain of material is sucked away from the companion star onto the surface of the neutron star.

Because a neutron star is so dense -- on Earth, one teaspoonful would weigh a billion tons -- the companion star material that reaches the neutron star surface is strongly compressed and heated. Eventually nuclear reactions trigger an explosion that burns through the surface layer of accumulated material, resulting in a burst of X-rays clearly detectable by ground- and space-based instruments.

X-ray bursts repeat every few hours to days, along the way fusing hydrogen and helium into a mixture of elements that is itself potentially reactive. In contrast, superbursts occur when, after many months, the accumulated "ashes" produced in the X-ray bursts ignite in a different, even more dramatic nuclear explosion.

The result is an outpouring of X-rays some 1,000 times as energetic as a standard X-ray burst. One superburst, which lasts only on the order of a few hours, releases as much energy as the sun will radiate in a decade.

Though hardly subtle astrophysical phenomena, superbursts remain shrouded in some mystery, largely because only twelve of the extreme events have ever been observed. This mystery is what attracted the attention of researchers participating in the Joint Institute for Nuclear Astrophysics, or JINA, project.

Working with colleagues at Los Alamos National Laboratory and the University of Mainz in Germany, JINA-affiliated NSCL scientists set out to build the most accurate model to-date of the crusts of accreting neutron stars. The team calculated that reactions in the stars' crusts release 10 times more heat than indicated by earlier models.

At least in part, this newly discovered heat helps to reconcile the work of theorists and experimentalists who study neutron stars. Prior to Schatz and Brown's research, theoretical astrophysicists predicted that superbursts should occur every ten years or so. Now, according to the new calculation, theorists can explain why the gigantic explosions should occur every three or four years.

But more work remains to be done. According to observational data, superbursts occur roughly annually -- and scientists still aren't altogether sure why.

"So this doesn't quite solve the problem," Brown said. "It's still an open question as to how nature ignites superbursts."

Preprint of forthcoming Astrophysical Journal paper, "Heating in the Accreted Neutron Star Ocean: Implications for Superburst Ignition": http://arxiv.org/abs/astro-ph/0609828; the paper's lead author is former NSCL-JINA postdoc Sanjib Gupta, who now works at Los Alamos.

Related Links
JINA science nugget
Michigan State University
Stellar Chemistry, The Universe And All Within It
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Featherweight Celestial Pair Has Uncertain Future Together
La Serena, Chile (SPX) Apr 11, 2007
Astronomers have serendipitously discovered a record-breaking pair of low-mass stars with an extreme orbital separation. The petite objects, each of which has a mass less than 100 times that of Jupiter, are separated by more than 5,000 times the distance between the Sun and Earth � a value that breaks the previous record by a factor of three and leaves the duration of their future together uncertain.







  • Nondestructive Testing Keeps Bagram Aircraft Flying
  • New FAA Oceanic Air Traffic System Designed By Lockheed Martin Fully Operational
  • NASA Seeks New Research Proposals
  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming

  • Driverless Car Goes On Show In London
  • Made In USA Losing Cachet
  • Technique Creates Metal Memory And Could Lead To Vanishing Dents
  • Toyota Anticipates Sharp Increase In Its Hybrid Sales

  • Intelsat To Test Internet Routing In Space For The US Military
  • Northrop Grumman And LockMart Team Up For Integrated Air And Missile Defense Battle Command
  • Harris Donates OS/COMET For Use In FalconSAT Program
  • ViaSat Awarded Blue Force Tracking Network Upgrade Contract

  • Raytheon Receives Contracts For Patriot Missile Facility Support
  • Russia Targets Counteroffensive Against ABM
  • Luna To Supply Sensors For Interceptor Kill Vehicles
  • Washington Trying To Use Europe As A Cover For ABM Plans

  • Satellite Images Aid Implementation Of Agricultural Reforms
  • Farmland Across China At Risk From Pollution
  • Anthropologist Finds Earliest Evidence Of Maize Farming In Mexico
  • Boost In Rice Production To Avoid Food Shortages In Indonesia

  • Tsunami Emergency In Solomons Declared Over
  • DigitalGlobe And GeoEye Partner With The USGS In Support Of International Charter
  • Philippine Survivors Left Feeling Forgotten
  • Study Of Coastal Disasters Yields Surprising Findings And Arresting Images

  • Sri Lanka Tigers Deny Using Satellite Illegally
  • Northrop Grumman Selected For Alternative Satellite Research And Development Effort
  • Raytheon Receives Approval For Precision Placement Of NPOESS Antennae In Antarctica
  • A Feather-Light Touch Needed For Darwin Frictionless Optics

  • Top Robotics Teams To Rack And Roll Atlanta Georgia Dome
  • Assistive Robot Adapts To People And New Places
  • Flexible Electronics Could Find Applications As Sensors And Artificial Muscles
  • Machine Shop Keeps Robots Rolling

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement