Subscribe free to our newsletters via your
. GPS News .




ENERGY TECH
Hot lithium vapors shield fusion facility walls
by Staff Writers
Washington DC (SPX) Nov 15, 2013


This is an image of lithium emission during experiments conducted on the Magnum-PSI device. Plasma streams toward the target from the left and impinges the sample indicated by the yellow dashed line. The lithium ablates into the plasma stream and forms a cloud in front of the target. Credit: M. Jaworski.

Recent experiments provide the first assessment of the toughness of a novel lithium coating in the face of intense bombardment by very hot plasma in the divertor region of fusion devices. The results show that this coating can shield the divertor region, which vents plasma exhaust, for 10 times longer than previously expected.

If confirmed by further research, this type of lithium treatment could alleviate widespread concerns that liquid-lithium plasma-facing components will rapidly overwhelm the core of the plasma with impurities and abort fusion reactions.

Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the Dutch Institute for Fundamental Energy Research (DIFFER) conditioned the target samples with lithium and, in the course of experiments, raised the surface temperature above 900 degrees Celsius.

At such high temperatures the lithium rapidly ablates, or wears away, from the target through a combination of evaporation and other erosion processes. The vaporized lithium is expected to serve as a shield that will intercept and mitigate the intense plasma flux before it can impinge upon the rest of the wall.

These experiments demonstrated that such a vapor cloud could be produced and was stable over a wide temperature range. The research found that the regime persisted for three-to-four seconds under the intense plasma bombardment. This indicated that nearly 100 percent of any eroded wall material had been confined to the surface of the sample.

Simple estimates had suggested that coatings without such high confinement at the target could last less than half a second under the intense conditions and would fail to keep impurities from drifting into other parts of the machine.

These initial experiments, performed on the Magnum-PSI linear plasma device at the Dutch center, were done in support of a research and development program planned for the National Spherical Torus Experiment-Upgrade (NSTX-U) at PPPL. The Magnum-PSI plasma served as a proxy for the hot plasma exhaust that the divertor region will channel away in the NSTX-U and other current and future fusion facilities. The researchers used a lithium evaporator developed at PPPL to test the novel vapor-shielded regime on different target materials.

This research indicates that modest coatings of lithium on metallic substrates such as tungsten can be sufficient for initial experiments of the regime in a tokamak such as NSTX-U. Demonstration of the vapor-shielded regime in the NSTX-U would provide proof-of-principle for using liquid lithium as a divertor target material in a reactorrelevant device.

Erosion and re-deposition of lithium coatings on graphite and TZM molybdenum in support of NSTX-U divertor operations (T. Abrams); Session JO4: NSTX-U and Pegasus

.


Related Links
American Physical Society
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Plasma experiment demonstrates admirable self-control
Washington DC (SPX) Nov 15, 2013
A team of Chinese and American scientists has learned how to maintain high fusion performance under steady conditions by exploiting a characteristic of the plasma itself: the plasma self-generates much of the electrical current needed for plasma containment in a tokamak fusion reactor. This self-generated, or "bootstrap," current has significant implications for the cost-effectiveness of fusion ... read more


ENERGY TECH
Uruguay to bar foreigners buying land

South Korea's growing 'kimchi deficit'

NGO asks EU to not buy Paraguay beef over indigenous concerns

Egypt farmers fear water supply threat from Ethiopia dam

ENERGY TECH
Accidental discovery dramatically improves electrical conductivity

Super-thin membranes clear the way for chip-sized pumps

German chip maker Infineon meets full-year targets: firm

Diamond Imperfections Pave the Way to Technology Gold

ENERGY TECH
Vets of Doolittle WWII raid hold a final reunion

Indonesia evacuates bodies after deadly helicopter crash

Boeing and Kongsberg Defense Systems Complete Joint Strike Missile Check on FA-18 Super Hornet

New Boeing B-52 Upgrade to Increase Smart Weapons Capacity by Half

ENERGY TECH
Volkswagen to recall over 640,000 vehicles in China

GM moves international operations HQ to Singapore from Shanghai

Three injured at Tesla electric car plant in California

Volkswagen to recall over 207,000 vehicles in China: govt

ENERGY TECH
Savers boosting Bitcoin demand in China: exchange

US Treasury chief sees Asia-Pacific trade deal by year-end

Canadian miner says patience running out over Romania plans

Canadian miner hopes to dig for gold in Romania despite setback

ENERGY TECH
Brazil Amazon deforestation rose 28 pct in past year: official

Amazon deforestation could mean droughts for western US

Carbon storage recovers faster than plant biodiversity in re-growing tropical forests

Amazon deforestation could trigger droughts in U.S. West

ENERGY TECH
UMD, Google and gov. create first detailed map of global forest change

UN tasks imaging satellites for Haiyan relief

Satellites packed like sardines

Global map provides new insights into land use

ENERGY TECH
All aboard the nanotrain network

A nano-sized sponge made of electrons

Turning nanoparticles into complex nanostructures

Taking a New Look at Carbon Nanotubes




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement