GPS News  
STELLAR CHEMISTRY
Hitomi mission glimpses cosmic 'recipe' for the nearby universe
by Staff Writers
Greenbelt MD (SPX) Nov 15, 2017


Illustration of Hitomi, an X-ray astronomy observatory.

Thanks to an in-depth look into the composition of gas in the Perseus galaxy cluster, Japan's Hitomi mission has given scientists new insights into the stellar explosions that formed its chemical elements.

Before its brief mission ended unexpectedly in March 2016, Japan's Hitomi X-ray observatory captured exceptional information about the motions of hot gas in the Perseus galaxy cluster. Now, thanks to unprecedented detail provided by an instrument developed jointly by NASA and the Japan Aerospace Exploration Agency (JAXA), scientists have been able to analyze more deeply the chemical make-up of this gas, providing new insights into the stellar explosions that formed most of these elements and cast them into space.

The Perseus cluster, located 240 million light-years away in its namesake constellation, is the brightest galaxy cluster in X-rays and among the most massive near Earth. It contains thousands of galaxies orbiting within a thin hot gas, all bound together by gravity. The gas averages 90 million degrees Fahrenheit (50 million degrees Celsius) and is the source of the cluster's X-ray emission.

Using Hitomi's high-resolution Soft X-ray Spectrometer (SXS) instrument, researchers observed the cluster between Feb. 25 and March 6, 2016, acquiring a total exposure of nearly 3.4 days. The SXS observed an unprecedented spectrum, revealing a landscape of X-ray peaks emitted from various chemical elements with a resolution some 30 times better than previously seen.

In a paper published online in the journal Nature on Nov. 13, the science team shows that the proportions of elements found in the cluster are nearly identical to what astronomers see in the Sun.

"There was no reason to expect that initially," said coauthor Michael Loewenstein, a University of Maryland research scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The Perseus cluster is a different environment with a different history from our Sun's. After all, clusters represent an average chemical distribution from many types of stars in many types of galaxies that formed long before the Sun."

One group of elements is closely tied to a particular class of stellar explosion, called Type Ia supernovas. These blasts are thought to be responsible for producing most of the universe's chromium, manganese, iron and nickel - metals collectively known as "iron-peak" elements.

Type Ia supernovas entail the total destruction of a white dwarf, a compact remnant produced by stars like the Sun. Although stable on its own, a white dwarf can undergo a runaway thermonuclear explosion if it's paired with another object as part of a binary system. This occurs either by merging with a companion white dwarf or, when paired with a nearby normal star, by stealing some of partner's gas. The transferred matter can accumulate on the white dwarf, gradually increasing its mass until it becomes unstable and explodes.

An important open question has been whether the exploding white dwarf is close to this stability limit - about 1.4 solar masses - regardless of its origins. Different masses produce different amounts of iron-peak metals, so a detailed tally of these elements over a large region of space, like the Perseus galaxy cluster, could indicate which kinds of white dwarfs blew up more often.

"It turns out you need a combination of Type Ia supernovas with different masses at the moment of the explosion to produce the chemical abundances we see in the gas at the middle of the Perseus cluster," said Hiroya Yamaguchi, the paper's lead author and a UMD research scientist at Goddard. "We confirm that at least about half of Type Ia supernovas must have reached nearly 1.4 solar masses."

Taken together, the findings suggest that the same combination of Type Ia supernovas producing iron-peak elements in our solar system also produced these metals in the cluster's gas. This means both the solar system and the Perseus cluster experienced broadly similar chemical evolution, suggesting that the processes forming stars - and the systems that became Type Ia supernovas - were comparable in both locations.

"Although this is just one example, there's no reason to doubt that this similarity could extend beyond our Sun and the Perseus cluster to other galaxies with different properties," said coauthor Kyoko Matsushita, a professor of physics at the Tokyo University of Science.

Although short-lived, the Hitomi mission and its revolutionary SXS instrument - developed and built by Goddard scientists working closely with colleagues from several institutions in the United States, Japan and the Netherlands - have demonstrated the promise of high-resolution X-ray spectrometry.

"Hitomi has permitted us to delve deeper into the history of one of the largest structures in the universe, the Perseus galaxy cluster, and explore how particles and materials behave in the extreme conditions there," said Goddard's Richard Kelley, the U.S. principal investigator for the Hitomi collaboration. "Our most recent calculations have provided a glimpse into how and why certain chemical elements are distributed throughout galaxies beyond our own."

JAXA and NASA scientists are now working to regain the science capabilities lost in the Hitomi mishap by collaborating on the X-ray Astronomy Recovery Mission (XARM), expected to launch in 2021. One of its instruments will have capabilities similar to the SXS flown on Hitomi.

Research Report: "Solar Abundance Ratios of the Iron-Peak Elements in the Perseus Cluster," Hitomi Collaboration, 2017 Nov. 13, Nature

STELLAR CHEMISTRY
The star that would not die
Goleta CA (SPX) Nov 09, 2017
Supernovae, the explosions of stars, have been observed in the thousands and in all cases they marked the death of a star. Astronomers at Las Cumbres Observatory have discovered a remarkable exception - a star that exploded multiple times over a period of more than fifty years. Their observations are challenging existing theories on these cosmic catastrophes. When the supernova, named iPTF ... read more

Related Links
Hitomi at NASA
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Cover crops shield soil from extreme temps

Chinese company offers lifetime of booze for $1,700 on Alibaba

Sensors applied to plant leaves warn of water shortage

WSU researcher sees huge carbon sink in soil minerals

STELLAR CHEMISTRY
Researchers develop flexible, stretchable photonic devices

New quantum materials offer novel route to 3-D electronic devices

Two-dimensional materials unlock the path to ultra-low-power transistors

The next generation of power electronics?

STELLAR CHEMISTRY
Lockheed awarded contract for integration of F-35, SDB-II

Norway receives first three F-35s from Lockheed Martin

Air Force pilot shortage has grown, is 'stretching the force to the limit'

BAE completes full scale test of F-35A airframe

STELLAR CHEMISTRY
Uber IPO 'target' is 2019: CEO

Vehicle emissions per driver on the rise, study finds

EV corridor will stretch from Norway to Italy

Ford, Chinese firm to invest $756 million on electric cars

STELLAR CHEMISTRY
Trump says trade surplus unfair, adds 'I don't blame China'

Trump's $250bn China deals are small beer: analysts

China's consumer price inflation accelerates in October

China eases foreign limits in finance as Trump leaves

STELLAR CHEMISTRY
Police detain protesters in primeval forest dispute

Peace brings hope for Colombia's biodiversity: Santos

US imposes anti-dumping duties on Chinese hardwood plywood

Ecological restoration success higher with natural measures

STELLAR CHEMISTRY
NASA CubeSat to Test Miniaturized Weather Satellite Technology

The changing colors of our Living Planet

Mapping functional diversity of forests with remote sensing

How ice in clouds is born

STELLAR CHEMISTRY
Better, bolder printing with silicon nanostructures

Practical superconducting nanowire single photon detector highly efficient

Subset of carbon nanotubes poses cancer risk similar to asbestos in mice

Simple green synthesis is a breath of fresh air









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.