GPS News  
STATION NEWS
High-Tech Methods Study Bacteria on the International Space Station
by Staff Writers
Pasadena CA (JPL) Oct 28, 2015


The International Space Station. Image courtesy NASA.

Where there are people, there are bacteria, even in space. But what kinds of bacteria are present where astronauts live and work? Researchers from NASA's Jet Propulsion Laboratory, Pasadena, California, in collaboration with colleagues at other institutions, used state-of-the-art molecular analysis to explore the microbial environment on the International Space Station.

They then compared these results to the bacteria found in clean rooms, which are controlled and thoroughly cleaned laboratory environments on Earth.

Examining samples from an air filter and a vacuum dust bag from the space station, researchers found opportunistic bacterial pathogens that are mostly innocuous on Earth but can lead to infections that result in inflammations or skin irritations. In general, they found that the human skin-associated bacteria Corynebacterium and Propionibacterium (Actinobacteria) but not Staphylococcus were more abundant on the station than in Earth-based clean rooms.

"Studying the microbial community on the space station helps us better understand the bacteria present there, so that we can identify species that could potentially damage equipment or pose harms to astronaut health. It also helps us identify areas that need more rigorous cleaning," said Kasthuri Venkateswaran, who led the research at JPL with collaborators Aleksandra Checinska, the study's first author, and Parag Vaishampayan.

The findings of this study help NASA establish a baseline for monitoring the cleanliness of the space station, which will in turn help manage astronaut health in the future. However, with this particular type of DNA analysis, researchers could not conclude whether these bacteria are harmful to astronaut health.

The space station is a unique environment, featuring microgravity, space radiation, elevated carbon dioxide and constant presence of humans. Understanding the nature of the communities of microbes - what scientists call "the microbiome" - in the space station is key to managing astronaut health and maintenance of equipment.

Previous studies of the station have used traditional microbiology techniques, which culture bacteria and fungi in the lab, to assess the composition of the microbial community. Now, Venkateswaran and colleagues are using the latest DNA sequencing technologies to rapidly and precisely identify the microorganisms present on the space station.

"Deep sequencing allows us to get a closer look at the microbial population than with traditional methods," Venkateswaran said.

The team compared samples from the station's air filter and vacuum bag with dust from two JPL clean rooms. While clean rooms circulate fresh air, the space station filters and recirculates existing air. Also, importantly, there are always six people living on the space station, whereas a cleanroom may see 50 people go in and out in a day, but not be inhabited continuously. Clean rooms are not airtight, but there are several layers of rooms that would prevent the free exchange of air particulates.

The researchers analyzed the samples for microorganisms, and then stained their cells with a dye to determine whether they were living or dead. This enabled them to measure the size and diversity of viable bacterial and fungal populations, and determine how closely the conditions in the Earth clean rooms compare with the space station environment.

Their results show that Actinobacteria made up a larger proportion of the microbial community in the space station than in the cleanrooms. The authors conclude that this could be due to the more stringent cleaning regimens possible on Earth. The research did not address the virulence of these pathogens in closed environments or the risk of skin infection to astronauts.

Using these newer DNA sequencing technologies, researchers could also, in the future, study how microgravity affects bacteria. The current thinking is that microgravity is not favorable to bacterial survival generally, but that some species that can withstand it may become more virulent. Such research will be important for long-duration space missions, such as NASA's journey to Mars.

Other study co-authors include Alexander J. Probst of the University of California, Berkeley; James R. White of Resphera Biosciences, Baltimore; Deepika Kumar, Victor G. Stepanov, and George E. Fox of the University of Houston, Texas; Henrik R. Nilsson of the University of Gothenburg, Sweden; Duane L. Pierson of NASA's Johnson Space Center, Houston; and Jay Perry of NASA's Marshall Space Flight Center, Huntsville, Alabama. They report their findings in the open access journal Microbiome.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ISS
Station at NASA
Station and More at Roscosmos
S.P. Korolev RSC Energia
Watch NASA TV via Space.TV
Space Station News at Space-Travel.Com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STATION NEWS
RSC Energia patented inflatable space module for ISS
Moscow, Russia (SPX) Oct 20, 2015
Rocket and Space Corporation (RSC) Energia has taken out a patent for the invention of a transformable habitable module for the Russian Segment of the International Space Station (ISS) and future space stations. The module consists of a rigid core compartment with a constant volume and a multi-layered transformable pressurized shall deployed around it. With that, the size and ergonomics of ... read more


STATION NEWS
EU lawmakers throw out GMO compromise law

Reducing the sweetness to survive

Farmers lose debt gamble in typhoon-plagued Philippines

Australian technology allows cows' weights to be monitored from space

STATION NEWS
Photons open the gateway for quantum networks

Researchers transform slow emitters into fast light sources

Electronics get a power boost with the addition of a simple material

Light goes infinitely fast with new on-chip material

STATION NEWS
China punishes Shanghai airport for flight delays

Lockheed Martin delivers 31st C-5M Super Galaxy to U.S. Air Force

Air Force Awards Contract for Long Range Strike Bomber

Errant military blimp sparks fighter jet response, power outages in US

STATION NEWS
Pollution scam pushes VW into first quarterly loss in 15 years

Tokyo Motor Show kicks off with a spotlight on self-driving cars

Automakers win reprieve on EU pollution testing

Cyclists battle Philippine capital's 'Carmageddon'

STATION NEWS
German exporters thrive despite China concerns: federation

Pomp and protests as China's Xi meets Queen Elizabeth II

India's Tata Steel blames China for British jobs cuts

Myanmar's elite dig 'stone of heaven' from mines of hell

STATION NEWS
Elephants boost tree losses in South Africa's largest savanna reserve

More rain leads to fewer trees in the African savanna

Future coastal climate not cool for redwood forests

New study rings alarm for sugar maple in Adirondacks

STATION NEWS
China plans to launch CO2 monitoring satellite in 2016

Establishing priorities for Earth observation satellites

Minsk, Moscow to Define Concept of Belarusian Remote Sensing Satellite Soon

Kazakhstan to use own satellites to track illegal activities

STATION NEWS
Umbrella-shaped diamond nanostructures make efficient photon collectors

Anti-clumping strategy for nanoparticles

Are cars nanotube factories on wheels

New design rule brings nature-inspired nanostructures one step closer









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.