. GPS News .




.
TECH SPACE
Hiding Objects With a Terahertz Invisibility Cloak
by Staff Writers
Evanston IL (SPX) Sep 06, 2011

Illustration only.

Researchers at Northwestern University have created a new kind of cloaking material that can render objects invisible in the terahertz range. Though this design can't translate into an invisibility cloak for the visible spectrum, it could have implications in diagnostics, security, and communication.

The cloak, designed by Cheng Sun, assistant professor of mechanical engineering at Northwestern's McCormick School of Engineering and Applied Science, uses microfabricated gradient-index materials to manipulate the reflection and refraction of light.

Sun's research was published in Scientific Reports, a new online, open-source journal that provides rapid publication and high visibility of research for all areas of science.

Humans generally recognize objects through two features: their shape and color. To render an object invisible, one must be able to manipulate light so that it will neither scatter at an object's surface nor be absorbed or reflected by it (the process which gives objects color).

In order to manipulate light in the terahertz frequency, which lies between infrared and microwaves, Sun and his group developed metamaterials: materials that are designed at the atomic level.

Sun's tiny, prism-shaped cloaking structure, less than 10 millimeters long, was created using a technique called electronic transfer microstereolithography, where researchers use a data projector to project an image on a liquid polymer, then use light to transform the liquid layer into a thin solid layer.

Each of the prism's 220 layers has tiny holes that are much smaller than terahertz wavelengths, which means they can vary the refraction index of the light and render invisible anything located beneath a bump on the prism's bottom surface; the light then appears to be reflected by a flat surface.

Sun says the purpose of the cloak is not to hide items but to get a better understanding of how to design materials that can manipulate light propagation.

"This demonstrates that we have the freedom to design materials that can change the refraction index," Sun said. "By doing this we can manipulate light propagation much more effectively."

The terahertz range has been historically ignored because the frequency is too high for electronics. But many organic compounds have a resonant frequency at the terahertz level, which means they could potentially be identified using a terahertz scanner.

Sun's research into terahertz optics could have implications in biomedical research (safer detection of certain kinds of cancers) and security (using terahertz scanners at airports).

Next Sun hopes to use what he's learned through the cloak to create its opposite: a terahertz lens. He has no immediate plans to extend his invisibility cloak to visible frequencies.

"That is still far away," he said. "We're focusing on one frequency range, and such a cloak would have to work across the entire spectrum."

Related Links
Northwestern University
Space Technology News - Applications and Research




 

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries








. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Penn Physicists Develop New Insight Into How Disordered Solids Deform
Philadelphia, PA (SPX) Sep 05, 2011
In solid materials with regular atomic structures, figuring out weak points where the material will break under stress is relatively easy. But for disordered solids, like glass or sand, their disordered nature makes such predictions much more daunting tasks. Now, a collaboration combining a theoretical model with a first-of-its kind experiment has demonstrated a novel method for identifyin ... read more


TECH SPACE
Chinese haute cuisine comes to Paris

Feeding cows natural plant extracts can reduce dairy farm odors and feed costs

Manipulating plants circadian clock may make all-season crops possible

Protecting wild species may require growing more food on less land

TECH SPACE
The quantum tunneling effect leads electron transport in porphyrins

Microscope on the go: Cheap, portable, dual-mode microscope uses holograms, not lenses

Flexible electronics hold promise for consumer applications

New nanoscale parameter by Aalto University resolves dilemmas on silicon property

TECH SPACE
IATA says July air traffic up but warns of gloomy outlook

NASA Collaborates on Cargo Airship Workshop in Alaska

Brazil seeks more aviation sales in Africa

Netherlands sells off aircraft

TECH SPACE
Toyota to make key hybrid parts in China

US auto sales post gains despite market turmoil

Germany gets 1st EV fast-charging station

China's SAIC Motor first-half net profit up 46%

TECH SPACE
China 'regrets' WTO ruling on US tyre dispute

Chinese firms to strengthen Venezuela iron sector

RugbyU: S.African union slams Chinese-made rugby jerseys

Argentina trade delegation woos China investments

TECH SPACE
West coast log, lumber exports soar in first half of 2011

Firewood Movement Leading Cause of Oak Infestation

Forests under threat from exotic earthworm invasion

60% of deforested Amazon used for cattle: study

TECH SPACE
TerraSAR-X monitors gas storage centre all the way from space

Orbital Wins ICESat-2 Earth Science Satellite Program Contract

Aquarius Makes First Ocean Salt Measurements

Next NASA Earth-Observing Satellite Arrives in California for Launch

TECH SPACE
Miner Xstrata faces climate test case in Australiaq

Honeycomb Carbon Crystals Possibly Detected in Space

Has Graphene Been Detected in Space

Pioneers get close-up view of miracle material graphene


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement