Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Helium 'balloons' offer new path to control complex materials
by Staff Writers
Oak Ridge TN (SPX) Jul 01, 2015


Inserting helium atoms (visualized as a red balloon) into a crystalline film (gold) allowed Oak Ridge National Laboratory researchers to control the material's elongation in a single direction. Image courtesy ORNL. For a larger version of this image please go here.

Researchers at the Department of Energy's Oak Ridge National Laboratory have developed a new method to manipulate a wide range of materials and their behavior using only a handful of helium ions. The team's technique, published in Physical Review Letters, advances the understanding and use of complex oxide materials that boast unusual properties such as superconductivity and colossal magnetoresistance but are notoriously difficult to control.

For the first time, ORNL researchers have discovered a simple way to control the elongation of a crystalline material along a single direction without changing the length along the other directions or damaging the crystalline structure. This is accomplished by adding a few helium ions into a complex oxide material and provides a never before possible level of control over magnetic and electronic properties.

"By putting a little helium into the material, we're able to control strain along a single axis," said ORNL's Zac Ward, who led the team's study. "This type of control wasn't possible before, and it allows you to tune material properties with a finesse that we haven't previously had access to."

The intricate way in which electrons are bound inside complex oxides means that any strain - stretching, pulling or pushing of the structure - triggers changes in many different electronic properties. This ripple effect complicates scientists' ability to study or make use of the finicky materials.

The researchers demonstrated the technique on a common oxide material known as LSMO but they anticipate the technique will be widely applicable to both functionality driven materials science research and fundamental physics studies.

"Complex oxides are where we expect an immediate impact, but this technique should be an important new tool to use on any material where crystal symmetry affects functionality," Ward said.

The team's work is a step toward bringing complex materials into commercial applications, which would greatly benefit from the ability to tune material properties with processing similar to current semiconductor technologies.

"Our strain doping technique demonstrates a path to achieving this need, as it can be implemented using established ion implantation infrastructure in the semiconductor industry," Ward said.

The method uses a low-energy ion gun to add small numbers of helium ions into the material after it has been produced. The process is also reversible; the helium can be removed by heating the material to high temperatures in vacuum. Previously developed strain tuning methods modify all directions in a material and cannot be altered or reversed afterwards.

"We can easily control the amount of strain and how deep that strain is inside the material," Ward said. "By controlling the number of helium atoms inserted into an epitaxial film, we select a strain state in one direction while the other two directions are held in place by the substrate."

The team's experimental technique will also benefit theoretical research that seeks to model complex materials to predict and understand their behavior.

"The complexity of these materials requires a huge equation to explain their behaviors," Ward said. "Normal strain tuning methods require you to change many variables in that equation which means that you don't really know which one is giving you a specific reaction. In our case, there's one variable. You can feed in a single term and try to break through that complexity a little bit by simplifying it. This is a great method to experimentally probe theoretical models."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Oak Ridge National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Cellulose from wood can be printed in 3-D
Goteborg, Sweden (SPX) Jun 22, 2015
A group of researchers at Chalmers University of Technology have managed to print and dry three-dimensional objects made entirely by cellulose for the first time with the help of a 3D-bioprinter. They also added carbon nanotubes to create electrically conductive material. The effect is that cellulose and other raw material based on wood will be able to compete with fossil-based plastics an ... read more


TECH SPACE
Firefighters forced to kill 20 million bees escaped from truck crash

The secret weapons of cabbages: Overcome by butterfly co-evolution

Genetic study of 'co-evolution' could provide clues to better food production

Alamo, French champagne vineyards vie for World Heritage status

TECH SPACE
Biomanufacturing of CdS quantum dots

KAIST team develops the first flexible phase-change random access memory

Stanford engineers find a simple yet clever way to boost chip speeds

Designer electronics out of the printer

TECH SPACE
Airbus inks $18 bn deal to sell China 75 A330s

Australian Air Force receives first C-27J transport

New model calculates how air transport connects the world

Erickson providing special training to Uruguayan AF pilots

TECH SPACE
A learning method for energy optimization of the plug-in hybrid electric bus

Physical study may give boost to hydrogen cars

Researchers build mini Jeep that turns tire friction into energy

Digital messages on vehicle windshields make driving less safe

TECH SPACE
France woos Chinese investors as PM wraps up fruitful trip

Framework for China-led international bank signed

China and France say tie-up in emerging economies 'win-win'

Australia lowers iron ore price forecast as China outlook softens

TECH SPACE
In Beirut, a green paradise off-limits to Lebanese

Some forestlands cool climate better without trees

Lax rules put Congo's forests, key carbon reserve, at risk

A contentious quest for Kevazingo, Gabon's sacred tree

TECH SPACE
Beijing Quadrupled in Size in a Decade

A New Era of Space Collaboration between Australia and US

Second Copernicus environmental satellite safely in orbit

Magnetic complexity begins to untangle

TECH SPACE
Ultrafast heat conduction can manipulate nanoscale magnets

MIPT physicists develop ultrasensitive nanomechanical biosensor

A new way to image surfaces on the nanoscale

Moving sector walls on the nano scale




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.