GPS News  
SPACE MEDICINE
Heat and light create new biocompatible microparticles
by Staff Writers
Durham NC (SPX) Mar 13, 2020

Mixtures of POPs (green) and ELPs (blue) can be used to create a variety of new microparticle architectures including (clockwise from upper left) porous particles, 'fruits-on-a-vine' networks, single hollow 'vesicle-like' particles, and core-shell networks.

Biomedical engineers at Duke University have devised a method for making small particles that are safe for living tissues that will allow them to create new shapes attractive for drug delivery, diagnostics and tissue engineering.

The results appear online on March 12 in the journal Nature Communications.

"With nothing more than some heat and light, we can make some pretty bizarre microparticles," said Stefan Roberts, a biomedical engineering research scientist at Duke. "The technique is simple enough that it could be scaled up to make billions of microparticles in a matter of minutes."

In the world of biocompatible microparticles, shape, size, internal microstructure and type of material dictate their intrinsic properties. Although companies and research labs can already fabricate many complex microparticles, the process usually involves sophisticated manufacturing techniques such as multiple-emulsion microfluidics or flow lithography. Both have their disadvantages.

Multiple-emulsion microfluidics tediously controls a series of individual oil droplets, but struggles to keep materials completely separate from one another and cannot be used for large-scale production. Flow lithography shines light through a patterned mask to etch shapes in soft materials and can make many particles in short order, but the process is difficult to tailor to complicated shapes and internal architectures.

Working with Ashutosh Chilkoti, the Alan L. Kaganov Distinguished Professor of Biomedical Engineering at Duke, Roberts set out to try a completely new approach - biological materials. The research pair have a history of working with elastin-like polypeptides (ELPs), which are disordered proteins that, much like a ball of spaghetti, derive their stability from chaos and have no true shape.

More recently, the team began working with partially ordered proteins (POPs), which retain many of the ELPs' biologically useful properties but have enough ordered segments to provide more stability than wet noodles.

Both types of proteins can be engineered to shift back and forth between phase states at certain temperatures. While this is a useful feature for applications such as slowly releasing drugs into the body or supporting tissue growth in wounds, the researchers soon discovered that they could also create various particle shapes by putting ELPs and POPs together.

"Disordered proteins are a hot topic in biology, with many researchers trying to discover how proteins without shape can still have a biological purpose," said Roberts. "An undercurrent of our work is to instead think of these proteins as a materials scientist would and see if we can engineer them for our own biological functions in ways that can't be achieved with current materials."

In the paper, Roberts and Chilkoti demonstrate some new microparticles made with these two types of proteins. By tweaking the temperatures at which they assemble and disassemble, and sweeping back and forth through a range of temperatures at various rates, the researchers show that they are able to create a suite of shapes such as a shell with a solid core, a shell with no core, and a tangle of cords dotted with shells that they dubbed "fruits on a vine." Then, by incorporating photosensitive amino acids, they show that they can freeze these shapes into solid microparticles with a flash of light.

The researchers say that the ability to create microparticles with precisely separated regions is relevant for applications such as drug delivery and tissue engineering.

Each set of parameters simultaneously creates millions of solid, biocompatible microparticles slightly larger than an average cell. It only takes a few minutes, and it all happens in a volume of liquid about the size of a drop of water.

"This is a test case for a type of material that is flexible and simple enough to create both commonly used shapes and architectures that aren't seen using current techniques," said Roberts. "We're using new biocompatible materials to create never-before-seen shapes simply by heating, cooling and shining a light on them."

Research Report: "Complex Microparticle Architectures from Stimuli-Responsive Intrinsically Disordered Proteins"


Related Links
Duke University
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
Scientists find toolkit to aid repair of damaged DNA
Washington DC (UPI) Mar 09, 2020
Scientists have developed a technique for repairing damaged DNA. The breakthrough, published this week in the journal Nature Communications, could pave the way for new therapies for cancer and neurodegenerative disorders. The accumulation of DNA damage is responsible for aging, cancer and neurological diseases like motor neuron disease, also known as ALS. Until now, scientists have struggled to find ways to repair this kind of damage. However, researchers have discovered a new protein ca ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
'Green favela' fights to live sustainably in Brazil

Pakistan struggles to combat devastating locust plague

Genome editing strategy could give rice, other crops nutritional boost

Kenya bans controversial donkey slaughter trade

SPACE MEDICINE
The ink of the future in printed electronics

A small step for atoms, a giant leap for microelectronics

Bristol scientists demonstrate first non-volatile nano relay operation at 200C

A talented 2D material gets a new gig

SPACE MEDICINE
Cathay Pacific 2019 profits plunge, predicts virus losses

Optimised flight routes for climate-friendly air transport

Transportation Command head questions Air Force's plan for refueler upgrades

India, U.S. ink $3B deal for helicopters

SPACE MEDICINE
Driver's-ed-inspired system could make automated parallel parking more accessible

Self-driving car trajectory tracking gets closer to human-driver ideal

Tesla resumes work on German plant after court ruling

GM unveils long-range battery in fresh electric car push

SPACE MEDICINE
Japan unveils fresh economic package to offset virus damage

China allows some firms to resume work at virus epicentre

China inflation slips but stays high on virus, food worries

China exports plunge on coronavirus epidemic

SPACE MEDICINE
Bushfires burned a fifth of Australia's forest: study

Close to tipping point, Amazon could collapse in 50 years

Protecting flood-controlling mangrove forests pays for itself

Burned area trends in the Amazon similar to previous years

SPACE MEDICINE
Kleos Data to Target Environmental Challenges in Brazil

Space video company Sen awards multimillion-euro contract to NanoAvionics

World View Stratollite fleet to provide high resolution imagery and data analytics in the Americas

NASA images show fall in China pollution over virus shutdown

SPACE MEDICINE
New DNA origami motor breaks speed record for nano machines

Deep-sea osmolyte makes biomolecular machines heat-tolerant

Nanobubbles in nanodroplets

New production method for carbon nanotubes gets green light









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.