GPS News  
Heat Transfer Between Materials Is Focus Of New Research Grant

Using nanotechnology, Pipe and his colleagues will reengineer the surfaces of materials to regulate the flow of heat.
by Staff Writers
Ann Arbor MI (SPX) May 01, 2008
Managing heat is a major challenge for engineers who work on devices from jet engines to personal electronics to nano-scale transistors. A team led by a University of Michigan mechanical engineer has received a five-year, $6.8-million grant from the Air Force to examine this problem, which is a barrier to more powerful, efficient devices.

Led by Kevin Pipe, an assistant professor in the Department of Mechanical Engineering, the team has received a Multidisciplinary University Research Initiative (MURI) award from the Air Force Office of Scientific Research. The research group includes nine scientists and engineers from three universities, including Brown University and the University of California at Santa Cruz.

"The processes by which heat is transferred at interfaces between different materials are poorly understood," Pipe said. "But in many systems, the ability to either efficiently transfer or block heat flow from one material to another is critically important to performance and reliability."

Inefficient heat flow is a main roadblock in the development of lasers and transistors that can attain higher powers. On the other hand, blocking heat exchange can dramatically improve the efficiency of thermoelectric energy conversion for compact power sources.

Pipe's group will use ultrafast lasers in a special X-ray technique developed by David Reis, a team member and associate professor in Physics at U-M. The technique allows researchers to actually watch the vibrations of the atoms that carry heat energy across an interface.

Using nanotechnology, Pipe and his colleagues will reengineer the surfaces of materials to regulate the flow of heat.

"A broad range of military and commercial applications stand to benefit from thermal interface control, including heat sinks for high-power electronics, thermal barrier coatings for aerospace components, and thermoelectric materials for power generation," Pipe said.

In addition to Pipe, the U-M team includes materials science and engineering professors Rachel Goldman and John Kieffer, and assistant professor Max Shtein, as well as physics professor Roberto Merlin and associate professor David Reis. Other members of the team include physics professor Humphrey Maris and engineering professor Arto Nurmikko of Brown University and electrical engineering associate professor Ali Shakouri of U-C Santa Cruz.

The Air Force MURI program is designed to focus on large multidisciplinary topic areas that intersect more than one traditional discipline, bringing together scientists and engineers with different backgrounds to accelerate both basic research and transition to application.

Related Links
University of Michigan
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Ixia Powers Green IT Testing At Interop Las Vegas
Calabasas CA (SPX) May 01, 2008
Ixia will showcase its "Green IT" testing initiatives for network equipment and data centers at Interop Las Vegas. Ixia will demonstrate a Proof-of-Concept (PoC) testing solution, a fully automated, comprehensive, turnkey benchmarking system for measuring power efficiency in relation to network and application load.







  • Belgian airline says it will cut costs, emissions by slowing down
  • Airbus, Boeing sign accord to cut air traffic impact on environment
  • Oil spike, cost of planes led to Oasis collapse: founders
  • Airbus boss says aviation unfairly targeted over climate change

  • Sweden Strengthens Plug-in Hybrid Vehicle Development
  • Carnegie Mellon Researchers Urge Development Of Low Carbon Electricity
  • Germany hopes for car emissions accord with France by June
  • Ocado Goes Greener With Prototype Electric Delivery Van

  • Raytheon Awarded Contract To Upgrade Satellite Communication Terminals
  • General Dynamics And Cisco Systems Advance Battlefield Networking
  • BAE To Develop Military Communications Network
  • 3rd SOPS Makes Historic WGS Transition

  • Patriot Power Key To ABM Successes To Date Part Two
  • Signing of US-Czech deal on missile shield postponed
  • Boeing And Turkey's HAVELSAN Renew Missile Defense Partnership
  • 'Invisible' Czechs protest over US anti-missile radar

  • Kenya's food aid under pressure as prices rise
  • Golden Wheat Greens Kenya's Drylands
  • Concerns resurface over Italian mozzarella as farms quarantined
  • Labour Shortages May Thwart Bumper Season

  • Scientists Collect Data To Aid Afghanistan Reconstruction
  • Tornado rips through Virginia, 200 injured: officials
  • 70 dead in China train crash: state media
  • Big Tokyo quake would cause human gridlock: study

  • COM DEV Launches Advanced Space-Based AIS Validation Nanosatellite
  • Loral Spins A Giant Web In Space As First ICO Bird Comes Alive
  • Graphene-Based Gadgets May Be Just Years Away
  • Boost For Green Plastics From Plants

  • Canada rejects sale of space firm to US defense firm
  • The Future Of Robotic Warfare Part Two
  • Robot anaesthetist developed in France: doctor
  • Surgeons use robots during heart surgery

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement