Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Heady mathematics
by Staff Writers
Berkeley CA (SPX) May 14, 2013


The problem with describing foams mathematically has been that the evolution of a bubble cluster a few inches across depends on what's happening in the extremely thin walls of each bubble, which are thinner than a human hair.

Bubble baths and soapy dishwater, the refreshing head on a beer and the luscious froth on a cappuccino. All are foams, beautiful yet ephemeral as the bubbles pop one by one.

Two University of California, Berkeley, researchers have now described mathematically the successive stages in the complex evolution and disappearance of foamy bubbles, a feat that could help in modeling industrial processes in which liquids mix or in the formation of solid foams such as those used to cushion bicycle helmets.

Applying these equations, they created mesmerizing computer-generated movies showing the slow and sedate disappearance of wobbly foams one burst bubble at a time.

The applied mathematicians, James A. Sethian and Robert I. Saye, will report their results in the May 10 issue of Science. Sethian, a UC Berkeley professor of mathematics, leads the mathematics group at Lawrence Berkeley National Laboratory (LBNL). Saye will graduate from UC Berkeley this May with a PhD in applied mathematics.

"This work has application in the mixing of foams, in industrial processes for making metal and plastic foams, and in modeling growing cell clusters," said Sethian. "These techniques, which rely on solving a set of linked partial differential equations, can be used to track the motion of a large number of interfaces connected together, where the physics and chemistry determine the surface dynamics."

The problem with describing foams mathematically has been that the evolution of a bubble cluster a few inches across depends on what's happening in the extremely thin walls of each bubble, which are thinner than a human hair.

"Modeling the vastly different scales in a foam is a challenge, since it is computationally impractical to consider only the smallest space and time scales," Saye said. "Instead, we developed a scale-separated approach that identifies the important physics taking place in each of the distinct scales, which are then coupled together in a consistent manner."

Saye and Sethian discovered a way to treat different aspects of the foam with different sets of equations that worked for clusters of hundreds of bubbles.

One set of equations described the gravitational draining of liquid from the bubble walls, which thin out until they rupture. Another set of equations dealt with the flow of liquid inside the junctions between the bubble membranes.

A third set handled the wobbly rearrangement of bubbles after one pops. Using a fourth set of equations, the mathematicians created a movie of the foam with a sunset reflected in the bubbles.

Solving the full set of equations of motion took five days using supercomputers at the LBNL's National Energy Research Scientific Computing Center (NERSC).

The mathematicians next plan to look at manufacturing processes for small-scale new materials.

"Foams were a good test that all the equations coupled together," Sethian said. "While different problems are going to require different physics, chemistry and models, this sort of approach has applications to a wide range of problems."

.


Related Links
University of California - Berkeley
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Another 'trophy' for the chemistry cabinet
Nottingham UK (SPX) May 13, 2013
The search for cleaner, low temperature nuclear fuels has produced a shock result for a team of experts at The University of Nottingham. First they created a stable version of a 'trophy molecule' that has eluded scientists for decades. Now they have discovered that the bonding within this molecule is far different than expected. Remarkably their findings have shown that it behaves in much ... read more


TECH SPACE
Neiker-Tecnalia develops a new method for the early detection of vineyard mildew, powdery mildew and botrytis

Study highlights under-appreciated benefit of oyster restoration

No-win situation for agricultural expansion in the Amazon

Sacred lotus genome sequence enlightens scientists

TECH SPACE
New magnetic graphene may revolutionize electronics

Flawed Diamonds Promise Sensory Perfection

Scientists develop device for portable, ultra-precise clocks and quantum sensors

Quantum optics with microwaves

TECH SPACE
EADS posts profit leap as Airbus orders soar

EADS says Pentagon ending helicopter program

Boeing Brings B-52 into Digital Age with Significant Communications Upgrade

Flyers don't turn off phones in planes: survey

TECH SPACE
Germany's Volkswagen plans new China car plant

Big Three US automakers to skip Tokyo Motor Show

Britain's Rolls-Royce to sponsor supercar's 1,000 mph record attempt

Rocky road for electric car market

TECH SPACE
Latvia grants dual citizenship for economic migrants, exiles

Greek PM hopes China trip will boost his country's ailing economy

Peru copper plans moving again despite protests

China to probe steel tube imports in trade dispute

TECH SPACE
Loss of Eastern Hemlock Will Affect Forest Water Use

US urban trees store carbon, provide billions in economic value

Forest-mapping satellite to join Earth study mission: ESA

As climate changes, boreal forests to shift north and relinquish more carbon than expected

TECH SPACE
ESA's next Earth Explorer satellite Will Map The Tropics

Landsat Thermal Sensor Lights Up from Volcano's Heat

Scaling up gyroscopes: From navigation to measuring the Earth's rotation

NASA Opens New Era in Measuring Western US Snowpack

TECH SPACE
Going negative pays for nanotubes

Researchers develop unique method for creating uniform nanoparticles

Dark field imaging of rattle-type silica nanorattles coated gold nanoparticles in vitro and in vivo

'Super-resolution' microscope possible for nanostructures




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement