. GPS News .




.
FARM NEWS
Growstones ideal alternative to perlite, parboiled rice hulls
by Staff Writers
Fayetteville, AR (SPX) Dec 20, 2011

Growstones, which have been successfully used as a hydroponic substrate, are produced from finely ground waste glass. The ground glass powder is combined with calcium carbonate and heated in a kiln.

In the greenhouse business, organic and inorganic growing substrates are chosen for the physical and chemical properties necessary to support specific crops and growing conditions. One important physical property in substrates is air-filled pore space, a particularly important characteristic that allows for gas exchange between plants' roots and the outside atmosphere.

Perlite and parboiled rice hulls are the two of the most common components used to increase air-filled pore space (AFP) in substrates. A study compared these popular components to Growstones, an aggregate produced from finely ground waste glass.

Although they are widely used in horticulture applications, both perlite and parboiled rice hulls have disadvantages and limitations. Perlite, a natural glass of volcanic origin that expands when quickly heated, has become increasingly expensive due to costs of mining, transportation, and production.

In addition to its rising price tag, perlite produces a siliceous dust that is an eye and lung irritant. Parboiled rice hulls (PBH) are produced only in specific areas of the United States, making high shipping costs an issue for end-users. And, because it is a plant-based component, PBH may also have limitations with respect to its use in long-term crops because of softening and decomposition.

Michael R. Evans, Professor in the Department of Horticulture at the University of Arkansas, created experiments to compare perlite and PBH with Growstones.

Evans' results were published in HortTechnology. According to Evans, aggregates such as Growstones (produced by Earthstone Corp., Santa Fe, NM) have been proposed as alternatives to perlite and PBH to adjust the physical properties of peat-based substrates.

Growstones, which have been successfully used as a hydroponic substrate, are produced from finely ground waste glass. The ground glass powder is combined with calcium carbonate and heated in a kiln.

Carbon dioxide is produced as the glass particles are heated and fused together, trapping air spaces inside the glass. The result is an expanded, lightweight product that is cooled before being ground to the desired size.

Evans' experiments showed that Growstones had an AFP higher than that of both peat and perlite. Additionally, when added to peat at a concentration of at least 15%, Growstones increased the AFP of the resulting peat-based substrate.

"Growstones can be used in a similar manner to perlite and PBH as an aggregate to increase AFP of peat based substrates", Evans said.

"The primary differences were that, at concentrations of 25% or more, GS resulted in a higher AFP than equivalent perlite-containing substrates.

Also, substrates containing 20% or more GS had a higher water-holding capacity than equivalent perlite- and PBH-containing substrates, and GS-containing substrates had a higher bulk density than equivalent perlite- and PBH-containing substrates."

All GS-containing substrates had physical properties within recommended ranges. Vinca, impatiens, and geranium plugs grown in GS-containing substrates were comparable to plants grown in equivalent perlite- and PBH-containing substrates.

Evans said that the experiments showed that Growstones can be successfully used as a component for substrates used in greenhouse crop production.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site here.

Related Links
American Society for Horticultural Science
Farming Today - Suppliers and Technology




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FARM NEWS
Wheat can't stop Hessian flies, so scientists find reinforcements
West Lafayette IN (SPX) Dec 20, 2011
Wheat's genetic resistance to Hessian flies has been failing, but a group of Purdue University and U.S. Department of Agriculture scientists believe that other plants may soon be able to come to the rescue. The Purdue and USDA research team developed a method to test toxins from other plants on Hessian fly larvae. The test simulates the effect of a transgenic plant without the lengthy and ... read more


FARM NEWS
Genome tree of life is largest yet for seed plants

Sugar pump in plants identified

New insight into why locusts swarm

Artichokes grow big in Texas

FARM NEWS
Quantum Computing Has Applications in Magnetic Imaging

Sharpening the lines could lead to even smaller features and faster microchips

Optical Fiber Innovation Could Make Future Optical Computers a 'SNAP'

New method for enhancing thermal conductivity could cool computer chips, lasers and other devices

FARM NEWS
Qantas reaches agreement with engineers

Removing sulfur from jet fuel cools climate

EU unyielding on airline carbon rules despite US pressure

Cathay announces economy class upgrade

FARM NEWS
Car makers risk 10-bln-euro fine for EU carbon breach

End of the road as carmaker Saab files for bankruptcy

Japan's Toyota plans record 2012 output: reports

GM says no to new Saab deal

FARM NEWS
Indonesia seeks crew of sunken asylum boat

Poland seeks new partnership with China

Afghanistan paves way for mining

Peru lifts state of emergency in mining dispute

FARM NEWS
The case of the dying aspens

Little headway in Durban on deforestation: experts

Climate change blamed for dead trees in Africa

Ecologists fume as Brazil Senate OKs forestry reform

FARM NEWS
SMOS detects freezing soil as winter takes grip

NASA Gears Up for Airborne Study of Earth's Radiation Balance

Study Shows More Shrubbery in a Warming World

Astrium awarded Sentinel 5 Precursor contract

FARM NEWS
Graphene grows better on certain copper crystals

New method of growing high-quality graphene promising for next-gen technology

Giant flakes make graphene oxide gel

Amorphous diamond, a new super-hard form of carbon created under ultrahigh pressure


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement