GPS News  
INTERN DAILY
Group blazes path to efficient, eco-friendly deep-ultraviolet LED
by Staff Writers
Ithaca NY (SPX) Mar 06, 2017


One of the major challenges with ultraviolet LEDs is efficiency, which is measured in three areas: injection efficiency - the proportion of electrons passing through the device that are injected into the active region; internal quantum efficiency (IQE) - the proportion of all electrons in the active region that produce photons or UV light; and light extraction efficiency - the proportion of photons generated in the active region that can be extracted from the device and are actually useful.

The darkest form of ultraviolet light, known as UV-C, is unique because of its reputation as a killer - of harmful organisms.

With wavelengths of between 200 and 280 nanometers, this particular form of UV light penetrates the membranes of viruses, bacteria, mold and dust mites, attacking their DNA and killing them. Sanitization with UV-C light has been around for more than 100 years, following Niels Finsen's discovery of UV light as an antidote to tuberculosis, which won the Faroese-Danish physician the 1903 Nobel Prize for Medicine.

Currently, most deep-UV lamps are mercury-based. They pose a threat to the environment, and are bulky and inefficient. A Cornell research group led by Huili (Grace) Xing and Debdeep Jena, along with collaborators from the University of Notre Dame, has reported progress in creating a smaller, more earth-friendly alternative.

Using atomically controlled thin monolayers of gallium nitride (GaN) and aluminum nitride (AlN) as active regions, the group has shown the ability to produce deep-UV emission with a light-emitting diode (LED) between 232 and 270 nanometer wavelengths. Their 232- nanometer emission represents the shortest recorded wavelength using GaN as the light-emitting material. The previous record was 239 nanometers, by a group in Japan.

"MBE-grown 232-270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures" was published online Jan. 27 in Applied Physics Letters.

Postdoctoral researcher SM (Moudud) Islam, the lead author, said: "UV-C light is very attractive because it can destroy the DNA of species that cause infectious diseases, which cause contamination of water and air."

One of the major challenges with ultraviolet LEDs is efficiency, which is measured in three areas: injection efficiency - the proportion of electrons passing through the device that are injected into the active region; internal quantum efficiency (IQE) - the proportion of all electrons in the active region that produce photons or UV light; and light extraction efficiency - the proportion of photons generated in the active region that can be extracted from the device and are actually useful.

"If you have 50 percent efficiency in all three components ... multiply all of these and you get one-eighth," Islam said. "You're already down to 12 percent efficiency."

In the deep-UV range, all three efficiency factors suffer, but this group found that by using gallium nitride instead of conventional aluminum gallium nitride, both IQE and light extraction efficiency are enhanced.

Injection efficiency is improved through the use of a polarization-induced doping scheme for both the negative (electron) and positive (hole) carrier regions, a technique the group explored in previous work.

Now that the group has proven its concept of enhanced deep-UV LED efficiency, its next task is packaging it in a device that could one day go on the market. Deep-UV LEDs are used in food preservation and counterfeit currency detection, among other things.

Further study will include packaging both the new technology and existing technologies in otherwise similar devices, for the purpose of comparison.

"In terms of quantifying the efficiency, we do want to package it within the next few months and test it as if it was a product, and try to benchmark it against a product with one of the available technologies," Jena said.

Research paper

INTERN DAILY
New advance could boost available organs for transplant
Miami (AFP) March 1, 2017
/> A new scientific advance could boost the number of donated organs available for transplant, and possibly reduce a critical shortage that leads to thousands of deaths each year, researchers said Wednesday. Deep-freezing organs and tissue through cryopreservation has been possible since the 1980s, but re-warming them without cooking or destroying the tissue has proven more difficult. Most ... read more

Related Links
Cornell University
Hospital and Medical News at InternDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERN DAILY
Colombia's 'drug triangle' puts hope in chocolate

Hand-picked specialty crops 'ripe' for precision agriculture techniques

Researchers propose using CRISPR to accelerate plant domestication

Magic cover crop carpet

INTERN DAILY
Super-fast computer made from DNA 'grows as it computes'

Chinese tech giant eyes global market with custom chip

Artificial synapse for neural networks

Combining the ultra-fast with the ultra-small

INTERN DAILY
Airbus, Australian air force redesign KC-30A refueling method

Boeing, Leonardo offer MH-139 for U.S. Air Force tender

Hungary gets more flight time on leased Gripen fighters

U.S. Air Force equips decoy flight vehicles with anti-jam capabilities

INTERN DAILY
Australia sues Audi, Volkswagen over emissions cheating

Norway says half of new cars now electric or hybrid

Volkswagen to recall over 680,000 Audis in China

Pressure mounts on Uber and CEO after missteps

INTERN DAILY
White House's Navarro: trade deficit threat to national security

Navy, shiny leather and suits: the big Paris fashion week trends

EU group says China plan 'skews' high-tech field

Alibaba's Jack Ma blames "outdated" law for fakes

INTERN DAILY
How nature creates forest diversity

The battle to save Bangkok's 'Green Lung'

Ancient peoples shaped the Amazon rainforest

Indigenous protest in Honduras marks activist's murder

INTERN DAILY
'Angry' Australian summer weather smashes records

Study shows US grasslands affected more by atmospheric dryness than precipitation

Second 'colour vision' satellite for Copernicus launched

EagleView announces Pictometry imagery integration with ArcGIS Pro

INTERN DAILY
Nano 'sandwich' offers unique properties

Scientists create a nano-trampoline to probe quantum behavior

Scientists decipher the nanoscale architecture of a beetle's shell

Switched-on DNA spark nano-electronic applications









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.