GPS News  
CARBON WORLDS
Graphene plasmons reach the infrared
by Staff Writers
Washington DC (SPX) Nov 16, 2016


Probing graphene plasmon in nanodisks by FTIR. Image courtesy Xiaolong Zhu from DTU Nanotech. For a larger version of this image please go here.

Graphene's unique properties can be both a blessing and a curse to researchers, especially to those at the intersection of optical and electronic applications. These single-atom thick sheets feature highly mobile electrons on their flexible profiles, making them excellent conductors, but in general graphene sheets do not interact with light efficiently.

Problematic for shorter wavelength light, photons in the near infrared region of the spectrum, where telecommunication applications become realizable. In a paper published this week in the journal Optics Letters, from The Optical Society (OSA), researchers at the Technical University of Denmark have demonstrated, for the first time, efficient absorption enhancement at a wavelength of 2 micrometers by graphene, specifically by the plasmons of nanoscale graphene disks.

Much like water ripples arising from the energy of a dropped pebble, electronic oscillations can arise in freely moving conduction electrons by absorbing light energy. The resulting collective, coherent motions of these electrons are called plasmons, which also serve to amplify the strength of the absorbed light's electric field at close proximity. Plasmons are becoming increasingly commonplace in various optoelectronic applications where highly conductive metals can be easily integrated.

Graphene plasmons, however, face an extra set of challenges unfamiliar to the plasmons of bulk metals. One of these challenges is the relatively long wavelength needed to excite them. Many efforts taking advantage of the enhancing effects of plasmons on graphene have demonstrated promise, but for low energy light.

"The motivation of our work is to push graphene plasmons to shorter wavelengths in order to integrate graphene plasmon concepts with existing mature technologies," said Sanshui Xiao, associate professor from the Technical University of Denmark.

To do so, Xiao, Wang and their collaborators took inspiration from recent developments at the university's Center of Nanostructured Graphene (CNG), where they demonstrated a self-assembly method resulting in large arrays of graphene nanostructures. Their method primarily uses geometry to bolster the graphene plasmon effects at shorter wavelengths by decreasing the size of the graphene structures.

Using lithographic masks prepared by a block copolymer based self-assembly method, the researchers made arrays of graphene nanodisks. They controlled the final size of the disks by exposing the array to oxygen plasma which etched away at the disks, bringing the average diameter down to approximately 18 nm. This is approximately 1000 times smaller than the width of a human hair.

The array of approximately 18 nm disks, resulting from 10 seconds of etching with oxygen plasma, showed a clear resonance with 2 micrometer wavelength light, the shortest wavelength resonance ever observed in graphene plasmons.

An assumption might be that longer etching times or finer lithographic masks, and therefore smaller disks, would result in even shorter wavelengths. Generally speaking this is true, but at 18 nm the disks already start requiring consideration of atomic details and quantum effects.

Instead, the team plans to tune graphene plasmon resonances at smaller scales in the future using electrical gating methods, where the local concentration of electrons and electric field profile alter resonances.

Xiao said, "To further push graphene plasmons to shorter wavelengths, we plan to use electrical gating. Instead of graphene disks, graphene antidots (i.e. graphene sheets with regular holes) will be chosen because it is easy to implement a back-gating technique."

There are also fundamental limits to the physics that prevent shortening the graphene plasmon resonance wavelength with more etching. "When the wavelength becomes shorter, the interband transition will soon play a key role, leading to broadening of the resonance. Due to weak coupling of light with graphene plasmons and this broadening effect, it will become hard to observe the resonance feature," Xiao explained.

Research paper: Z. Wang, T. Li, K. Almdal, N. Mortensen, S. Xiau and S. Ndoni, "Experimental demonstration of graphene plasmons working close to the near-infrared window,"


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Optical Society
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
CO2 emissions level off, still too high to save climate: report
Marrakesh, Morocco (AFP) Nov 14, 2016
Carbon emissions from burning fossil fuels have been nearly flat for three years in a row - a "great help" but not enough to stave off dangerous global warming, a report said Monday. Emissions of planet-warming carbon dioxide stayed level in 2015 at 36.3 billion tonnes (GtCO2) and were projected to rise "only slightly", by 0.2 percent in 2016, according to the annual Global Carbon Budget re ... read more


CARBON WORLDS
Agriculture victim of and solution to climate change

Pest control: Wicked weeds may be agricultural angels

As Delhi chokes, farmers defend scorched earth policy

Chile's cold south makes wine in warming climate

CARBON WORLDS
Engineers develop invisibility cloak for high-tech processing chips

Computers made of genetic material

New technique for creating NV-doped nanodiamonds may be boost for quantum computing

Scientists develop a semiconductor nanocomposite material that moves in response to light

CARBON WORLDS
French court green-lights controversial Nantes airport

Leonardo-Finmeccanica demonstrates C-27J capabilities

First woman to fly China's J-10 fighter killed in crash

Thales announces major investment in next generation aircraft communications technology

CARBON WORLDS
VW reaches 3.0-liter diesel agreement with EPA: report

Samsung to buy US auto parts supplier Harman for $8 bn

China auto sales growth falls back in October: group

VW's Audi hit with fresh emissions cheating lawsuit

CARBON WORLDS
China weakens yuan to eight-year low

Taiwan to punish fraudsters abroad after China deportations

China says retail sales growth slows in October

Sarkozy wants tax on US products if Trump scraps Paris pact

CARBON WORLDS
Mangrove protection key to survival for Senegalese community

Morocco's oases fight back creeping desert sands

Database captures most extensive urban tree sizes, growth rates across United States

New warning over spread of ash dieback

CARBON WORLDS
A Box of 'Black Magic' to Study Earth from Space

Successful calculation of human and natural influence on cloud formation

Extreme weather warnings at UN climate meeting

Don't see ISRO's Bhuvan as competition: Google India

CARBON WORLDS
Researchers use acoustic waves to move fluids at the nanoscale

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane

Shedding light on the formation of nanodroplets in aqueous

'Pressure-welding' nanotubes creates ultrastrong material









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.