. GPS News .




.
NANO TECH
Graphene: Impressive capabilities on the horizon
by Staff Writers
Washington DC (SPX) Jan 30, 2012

File image.

The Air Force Office of Scientific Research (AFOSR), along with other funding agencies, helped a Rice University research team make graphene suitable for a variety of organic chemistry applications-especially the promise of advanced chemical sensors, nanoscale electronic circuits and metamaterials.

Ever since the University of Manchester's Andre Geim and Konstantin Novoselov received the 2010 Nobel Prize in Physics for their groundbreaking graphene experiments, there has been an explosion of graphene related discoveries; but graphene experimentation had been ongoing for decades and many ultimate graphene associated breakthroughs were already well under way in various labs when the Nobel committee acknowledged the significance of this new wonder material.

And one such laboratory was Dr. James Tour's at Rice, whose team found a way to attach various organic molecules to sheets of graphene, making it suitable for a range of new applications.

Starting with graphene's two-dimensional atomic scale honeycomb lattice of carbon atoms, the Rice team built upon previous graphene community discoveries to transform graphene's one sheet structure into a superlattice.

While carbon is a key part in most organic chemical reactions, graphene poses a problem in that it plays an inert role-not responding to organic chemical reactions.

The Rice team solved this dilemma by treating graphene with hydrogen. This classic hydrogenation process restructured the graphene honeycomb lattice into a two-dimensional, semiconducting superlattice called graphane.

The hydrogenation process can then be tailored to make particular patterns in the superlattice to be followed by the attachment of mission specific molecules to where those hydrogen molecules are located. These mission specific molecular catalysts allow for the possibility of a wide variety of functionality.

They can not only be used as the basis for creating graphene-based organic chemistry, but tailored for electronics and optics applications, as well as novel types of metamaterials for nanoengineering highly efficient thermoelectric devices and sensors for various chemicals or pathogens.

The beauty of this process is the promise it holds for future devices with the ability to efficiently accomplish a wide variety of highly sophisticated functions in one small affordable device.

Dr. Charles Lee, the AFOSR program manager who funded this research, notes that graphene chemistry in general can enable smart materials for many special applications and that this latest effort in particular can contribute to future electronics applications and may be a way to arrive at faster and less energy consuming electronics.

Related Links
Air Force Office of Scientific Research
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Bilayer graphene works as an insulator
Riverside, CA (SPX) Jan 27, 2012
A research team led by physicists at the University of California, Riverside has identified a property of "bilayer graphene" (BLG) that the researchers say is analogous to finding the Higgs boson in particle physics. Graphene, nature's thinnest elastic material, is a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice. Because of graphene's planar and chicken wire-like str ... read more


NANO TECH
Fungi-filled forests are critical for endangered orchids

Barclays tops roll of shame at Davos

Improving crops from the roots up

Grafted watermelon plants take in more pesticides

NANO TECH
Jumpstarting computers with 3-D chips

Researchers Devise New Means For Creating Elastic Conductors

Cooling semiconductor by laser light

A new class of electron interactions in quantum systems

NANO TECH
Japan's ANA nine-month net profit down 10%

Stanford aero-engineers debut open-source fluid dynamics design application

Philippines welcomes PAL sale plan

Cathay to buy six Airbus planes for US$1.63bn

NANO TECH
Five possible buyers for bankrupt Saab: administrator

Honda 9-month net profit falls 71%, cuts forecasts

China car maker SAIC says 2011 profit surged

New foreign auto investment rules begin in China

NANO TECH
S. Korea minister calls trade pact with China necessary

Taiwan to open trade offices in China

EU drafts law to respond to Chinese protectionism: official

Bolivians demand controversial highway be built

NANO TECH
Restored wetlands rarely equal condition of original wetlands

Rate of tropical timber harvest a concern

$1.6 million fine for cutting down trees

Greeks fell trees for warmth amid economic chill

NANO TECH
NASA Finds 2011 Ninth-Warmest Year on Record

Satellite observes spatiotemporal variations in mid-upper tropospheric methane over China

NASA Sees Repeating La Nina Hitting its Peak

Map project accuses Google users of edits

NANO TECH
Graphene: Impressive capabilities on the horizon

Help Avoid Potential Risks From Rapidly Evolving Nano Tech

Bilayer graphene works as an insulator

Water sees right through graphene


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement