Subscribe free to our newsletters via your
. GPS News .




CARBON WORLDS
Graphene: Growing giants
by Staff Writers
Washington DC (SPX) Dec 12, 2013


This is an optical microscope image of a copper film mostly destroyed during graphene growth. What was a continuous copper film has decomposed into grey areas of bare sapphire, rings and irregular patches of copper that appear in a rainbow of colors due to oxidation, and small star-shaped islands of graphene, which appear bright because the graphene protects the copper from oxidation. Credit: David L. Miller, NIST.

To technology insiders, graphene is a certified big deal. The one-atom thick carbon-based material elicits rhapsodic descriptions as the strongest, thinnest material known. It also is light, flexible, and able to conduct electricity as well as copper. Graphene-based electronics promise advances such as faster internet speeds, cheaper solar cells, novel sensors, space suits spun from graphene yarn, and more.

Now a research team at the National Institute of Standards and Technology (NIST) in Boulder, Colo., may help bring graphene's promise closer to reality. While searching for an ideal growth platform for the material, investigators developed a promising new recipe for a graphene substrate: a thin film of copper with massive crystalline grains.

The team's findings appear in the journal AIP Advances, which is produced by AIP Publishing.

The key advance is the grain size of the copper substrate. The large grains are several centimeters in size - lunkers by microelectronics standards - but their relative bulk enables them to survive the high temperatures needed for graphene growth, explained NIST researcher Mark Keller.

The inability of most copper films to survive this stage of graphene growth "has been one problem preventing wafer-scale production of graphene devices," Keller said.

Thin films are an essential component of many electronic, optical, and medical technologies, but the grains in these films are typically smaller than one micrometer. To fabricate the new copper surface, whose grains are about 10,000 times larger, the researchers came up with a two-step process.

First, they deposited copper onto a sapphire wafer held slightly above room temperature. Second, they added the transformative step of annealing, or heat-treating, the film at a much higher temperature, near the melting point of copper.

To demonstrate the viability of their giant-grained film, the researchers successfully grew graphene grains 0.2 millimeters in diameter on the new copper surface.

The article, "Giant secondary grain growth in Cu films on sapphire" by David L. Miller, Mark W. Keller, Justin M. Shaw, Katherine P. Rice, Robert R. Keller and Kyle M. Diederichsen appears in the journal AIP Advances.

.


Related Links
American Institute of Physics
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Industrial age helps some coastal regions capture carbon dioxide
Columbus OH (SPX) Dec 12, 2013
Coastal portions of the world's oceans, once believed to be a source of carbon dioxide (CO2) to the atmosphere, are now thought to absorb as much as two-thirds more carbon than they emitted in the preindustrial age, researchers estimate. These coastal areas, which now appear to operate as one of the several types of so-called carbon "sinks," may help moderate global warming by absorbing ca ... read more


CARBON WORLDS
Peaceful bumblebee becomes invasive

Scientists map food security and self-provision of major cities

Study demonstrates that indigenous hunting with fire helps sustain Brazil's savannas

Home teams hold the advantage

CARBON WORLDS
A step closer to composite-based electronics

50 Meters of Optical Fiber Shrunk to the Size of Microchips

Chips meet Tubes: World's First Terahertz Vacuum Amplifier

NIST demonstrates how losing information can benefit quantum computing

CARBON WORLDS
End looms for US Air Force's 'Warthog' ground-attack jet

Iraq signs $1.1 bn deal to buy S. Korean fighters

India's Tejas fighter passes air-to-air missile firing test

Forecast: Growth ahead in military helicopter market

CARBON WORLDS
Peugeot confirms in talks with Chinese carmaker, GM pulls out

China auto sales hit record high in November

Britain pledges commitment to driverless car technology

China approves $1.3 bn Renault-Dongfeng joint venture

CARBON WORLDS
Myanmar businesses call for better deal from China

Multinationals boost Ireland but jobs go unfilled

Chinese investors look to mine Bitcoin volatility

Australia eases foreign ownership limits on Chinese miner

CARBON WORLDS
Young tropical forests contribute little to biodiversity conservation

More logging, deforestation may better serve climate in some areas

Humans threaten wetlands' ability to keep pace with sea-level rise

Development near Oregon, Washington public forests

CARBON WORLDS
Juno Gives Starship-Like View Of Earth Flyby

China-Brazil satellite fails to enter orbit

Mysteries of Earth's radiation belts uncovered by NASA twin spacecraft

Mapping the world's largest coral reef

CARBON WORLDS
Berkeley Lab Researchers Discover Nanoscale Shape-Memory Oxide

Laser light at useful wavelengths from semiconductor nanowires

Stanford engineers show how to optimize carbon nanotube arrays for use in hot spots

Ultra-sensitive force sensing with a levitating nanoparticle




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement