GPS News  
STELLAR CHEMISTRY
Gold-rich stars came from ancient galaxies
by Staff Writers
Tokyo, Japan (SPX) Nov 15, 2022

Distribution of stars and gas in a galaxy simulation. Yellow dots represent stars, and light blue dots depict gas. (Credit: Yutaka Hirai)

Recently, hundreds of gold-rich stars have been detected by state-of-the-art telescopes worldwide. New simulations of galaxy formation, with the highest resolution in both time and mass, show that these gold-rich stars formed in progenitor galaxies, small galaxies which merged to create the Milky Way.

Stars are thermonuclear chemical factories that produced most of the elements incorporated into planets. Most elements heavier than iron, including precious metals such as gold and platinum, came about from the rapid neutron-capture process (r-process).

When they die, stars release the heavy elements they've created into interstellar space where the elements can be reincorporated into the next generation of objects. Like planets, new stars also incorporate the heavy elements released by previous generations. By studying the chemical composition of stars, we should be able to deduce the kind of environment where the stars formed. But so far, a theoretical framework to explain the observed chemical diversity has been missing.

Now, an international research team, led by Yutaka Hirai from Tohoku University and the University of Notre Dame, tracked the formation of a virtual Milky-Way-like galaxy from the Big Bang to the present with a numerical simulation. This simulation has the highest time and mass resolutions to date, allowing the team to investigate the cycle of new materials released by old stars and absorbed into new ones.

Using the supercomputer ATERUI II in the Center for Computational Astrophysics at the National Astronomical Observatory of Japan, the team successfully ran the simulation over the course of several months, making it possible for the first time to analyze the formation of gold-rich stars in the Milky Way.

According to the research, most gold-rich stars formed over 10 billion years ago in small, building-block galaxies known as progenitor galaxies. Some but not all progenitor galaxies experience a neutron star merger, where large amounts of heavy r-process elements are produced and released, enriching that particular small galaxy. The predicted abundance of gold-enriched stars in the final Milky-Way-sized galaxy matches what is actually observed.

"The study's findings open a new avenue for extracting the fossil records of stars," says Hirai. "The gold-rich stars today tell us the history of the Milky Way."

Looking ahead, Hirai and his team plan to simulate the Milky Way's formation and clarify the origins of individual stars with the help of the new Fugaku supercomputer.

Research Report:"Origin of highly r-process-enhanced stars in a cosmological zoom-in simulation of a Milky Way-like galaxy"


Related Links
National Astronomical Observatory of Japan
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Red-supergiant supernova images reveal secrets of an earlier Universe
Minneapolis MN (SPX) Nov 10, 2022
An international research team led by the University of Minnesota Twin Cities has measured the size of a star dating back 2 billion years after the Big Bang, or more than 11 billion years ago. Detailed images show the exploding star cooling and could help scientists learn more about the stars and galaxies present in the early Universe. The paper is published in Nature, the world's leading peer-reviewed, multidisciplinary science journal. "This is the first detailed look at a supernova at a m ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Rising temperatures boost olive growing in Bosnia

Ivory Coast, Ghana throw down gauntlet on cocoa price

Doggone: wet pet food 'seven times worse' for climate than dry

Turning wastewater into fertilizer is feasible and could help to make agriculture more sustainable

STELLAR CHEMISTRY
NIST's grid of quantum islands could reveal secrets for powerful technologies

UK orders Chinese-owned firm to sell most of chip maker

Mini-engine exploits noise to convert information into fuel

Japan govt backs major firms in next-gen chip project

STELLAR CHEMISTRY
NATO says Russian jets conduct 'unsafe' Baltic ship overflight

France, Germany hail deal on new European fighter jet

US B-1B bomber redeployed for joint drill: S. Korean military

The cold heart that powers our ZEROe aircraft

STELLAR CHEMISTRY
How to make future autonomous transportation accessible to everyone

Brussels under pressure to tighten car pollution rules

Farizon's futuristic truck to hit road in 2023

Renault to list electric car unit on stock market, partner with China's Geely

STELLAR CHEMISTRY
EU's Russia sanctions a 'step towards war': Hungary PM

Xi, Harris call for open channels in latest US-China meeting

Asian markets mixed as China Covid worries grow

China seized rocket parts in disputed waters; US VP vows commitment to Philippines

STELLAR CHEMISTRY
No longer evergreen: Germany eyes diversity to save forests

Brazil's Lula, world leaders bolster UN climate talks

France backs Lula's proposal to hold climate conference in the Amazon

Subarctic boreal forest, vital for the planet, is at risk

STELLAR CHEMISTRY
Microsoft and Planet to provide AI and satellite data for African climate projects

China launches Yaogan 34 remote sensing satellite

Lockheed Martin, NVIDIA to build digital twin of current global weather conditions for NOAA

Metaspectral raises $4.7M to launch fusion, a cloud-based AI platform

STELLAR CHEMISTRY
New system designs nanomaterials that conduct heat in specific ways

Physicists generate new nanoscale spin waves

'Naturally insulating' material emits pulses of superfluorescent light at room temperature

Making nanodiamonds out of bottle plastic









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.