GPS News  
SOLAR DAILY
Glass with switchable opacity could improve solar cells and LEDs
by Staff Writers
Washington DC (SPX) Dec 14, 2017


New glass etched with nanograss structures can be switched from hazy to clear by applying water. As shown here, removing the water from the glass makes it appear hazy again. This switchable glass could offer a simple and inexpensive way to make smart windows that change between clear and opaque.

Using nanoscale grass-like structures, researchers at the University of Pittsburgh, Pennsylvania have created glass that lets through a large amount of light while appearing hazy. This is the first time that glass has been made with such high levels of haze and light transmittance at the same time, a combination of properties that could help boost the performance of solar cells and LEDs.

The glass exhibits another remarkable quality: It can be switched from hazy to clear by applying water. This could make it useful for creating smart windows that change haze or opacity to control the privacy of a room or to block glare from sunlight.

"Switchable glass available today is quite expensive because it uses transparent conducting layers to apply a voltage across the entire glass," said Paul W. Leu of the University of Pittsburgh's Swanson School of Engineering, leader of the research team. "Our glass would be potentially less expensive to make because its opacity can be switched in a matter of seconds by simply applying or removing liquid."

In Optica, The Optical Society's journal for high impact research, the researchers describe their new nanograss-based glass, which achieves a record 95 percent light transmittance and a similarly high degree of haze at the same time. The researchers experimented with glass etched with nanograss structures from 0.8 to 8.5 microns in height with "blades" each measuring a few hundred nanometers in diameter.

The discovery of switchability was one of serendipity. "I was cleaning the new nanograss glass when I discovered that cleaning it with water made the glass become clear," said project lead, graduate student Sajad Haghanifar. While the discovery was incidental, it can be easily explained.

"The water goes between the extremely hydrophilic nanostructures, making the nanograss glass act like a flat substrate. Because water has a very similar index of refraction to the glass, the light goes straight through it. When the water is removed, the light hits the scattering nanostructures, making the glass appear hazy."

Using nanograss to improve solar cells
Leu's group developed the new glass to improve the ability of solar cells to capture light and turn it into power. Nanostructure patterns can prevent light from reflecting off the solar cell's surface. These structures also scatter the light that enters the glass, helping more of the light reach the semiconductor material within the solar cell, where it is converted into power.

The new glass uses a unique pattern of nanostructures that looks much like grass. Because the structures are taller than previously-used nanostructures, they increase the likelihood that light will be scattered. Although glass with the nanostructures appears opaque, tests showed that most of the scattered light makes its way through the glass.

The fact that the glass is highly hazy and exhibits high transmittance could also make it useful for LEDs, which work in a way that is essentially the opposite of a solar cell, by using electricity that enters a semiconductor to produce light that is then emitted from the device. The new glass could potentially increase the amount of light that makes it from the semiconductor into the surroundings.

Finding the right 'grass' height
The researchers found that shorter nanograss improved the antireflection properties of the glass while longer nanograss tended to increase the haze. Glass with 4.5-micron-high nanograss showed a nice balance of 95.6 percent transmittance and 96.2 percent haze for light with a 550-nanometer wavelength (yellow light, a component of sunlight).

Although more work is needed to estimate the exact cost of manufacturing the new glass, the researchers predict that their glass will be inexpensive because it is easy to make. The nanostructures are etched into the glass using a process known as reactive ion etching, a scalable and straightforward method commonly used to make printed circuit boards.

To turn the glass into a smart window that switches from hazy to clear, it would require placing a piece of traditional glass over the nanograss glass. Pumps could be used to flow liquid into the space between the two glasses, and a fan or pump could be used to remove the water. The researchers also showed that in addition to water, applying acetone and toluene can also switch the glass from hazy to clear.

"We are now conducting durability tests on the new nanograss glass and are evaluating its self-cleaning properties," said Haghanifar. "Self-cleaning glass is very useful because it prevents the need for robotic or manual removal of dust and debris that would reduce the efficiency of solar panels, whether the panels are on your house or on a Mars rover."

Paper: S. Haghanifar, T. Gao, R. T. Rodriguez de Vecchis, B. Pafcheck, T. D. B. Jacobs, P. W. Leu, "Ultrahigh Transparency, Ultrahigh Haze Nanograss Glass with Fluid-Induced Switchable Haze," Optica, Volume 4, Issue 12, 1522-1525 (2017) DOI: 10.1364/OPTICA.4.001522.

SOLAR DAILY
Transformation to wind and solar achievable with low indirect GHG emissions
Potsdam, Germany (SPX) Dec 11, 2017
Different low carbon technologies from wind or solar energy to fossil carbon capture and sequestration (CCS) differ greatly when it comes to indirect greenhouse gas emissions in their life cycle. This is the result of a comprehensive new study conducted by an international team of scientists that is now published in the journal Nature Energy. Unlike what some ... read more

Related Links
The Optical Society
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Soil researchers quantify an underappreciated factor in carbon release to the atmosphere

NASA, University of Maryland Join Forces on Food Security

Drought-resistant plant genes could accelerate evolution of water-use efficient crops

Light green plants save nitrogen without sacrificing photosynthetic efficiency

SOLAR DAILY
Toshiba, Western Digital settle legal battle over chip unit sale

Researchers quantify factors for reducing power semiconductor resistance by two-thirds

Secure information transmission over 500m fiber links based on quantum technologies

Squeezing light into a tiny channel brings optical computing a step closer

SOLAR DAILY
Israel says F-35 stealth fighter jets operational

Qatar, France sign billion-dollar fighter jet deal amid Gulf crisis

Boeing's new KC-46A tanker completes first flight

General Dynamics to support training software, hardware for Air Force

SOLAR DAILY
Chinese electric carmaker to open Morocco plant

Singapore launches electric car-sharing service

Chinese auto giant to end petrol vehicle sales by 2025

Volkswagen boss urges end to diesel tax breaks

SOLAR DAILY
China exports surge in November as trade tensions flare

US says 'litigation-centered' WTO losing focus

China exports soar higher than expected in November

EU wins tougher, swifter anti-dumping trade powers

SOLAR DAILY
Forests are the key to fresh water

US agency confirms Canada softwood lumber hurting US industry

Flying laboratory reveals crucial tropical forest conservation targets in Borneo

NASA Survey Technique Estimates Congo Forest's Carbon

SOLAR DAILY
Understanding the climate impact of natural atmospheric particles

Sentinel-5P brings air pollution into focus

First global maps of traits that drive vegetation growth

UK-built satellite shines first light on air pollution

SOLAR DAILY
New nanowires are just a few atoms thick

Physicists explain metallic conductivity of thin carbon nanotube films

Ceria nanoparticles: It is the surface that matters

Semiconducting carbon nanotubes can reduce noise in interconnects









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.