GPS News  
CAR TECH
Getting more miles from plug-in hybrids
by Staff Writers
Riverside CA (SPX) Feb 11, 2016


Researchers at the University of California, Riverside have shown how to improve the efficiency of current PHEVs. Image courtesy University of California, Riverside. For a larger version of this image please go here.

Plug-in hybrid electric vehicles (PHEVs) can reduce fuel consumption and greenhouse gas emissions compared to their gas-only counterparts. Researchers at the University of California, Riverside's Bourns College of Engineering have taken the technology one step further, demonstrating how to improve the efficiency of current PHEVs by almost 12 percent.

Since plug-in hybrids combine gas or diesel engines with electric motors and large rechargeable batteries, a key component is an energy management system (EMS) that controls when they switch from 'all-electric' mode, during which stored energy from their batteries is used, to 'hybrid' mode, which utilizes both fuel and electricity. As new EMS devices are developed, an important consideration is combining the power streams from both sources in the most energy-efficient way.

While not all plug-in hybrids work the same way, most start in all-electric mode, running on electricity until their battery pack is depleted and then switching to hybrid mode. Known as binary mode control, this EMS strategy is easy to apply, but isn't the most efficient way to combine the two power sources.

In lab tests, blended discharge strategies, in which power from the battery is used throughout the trip, have proven to be more efficient at minimizing fuel consumption and emissions, but until now they haven't been a realistic option for real-world applications, said Xuewei Qi, a graduate student in the Bourns College of Engineering's Center for Environmental Research and Technology (CE-CERT) who led the research. Qi is working with CE-CERT Director Matthew Barth, a professor of electrical and computer engineering.

"Blended discharge strategies have the ability to be extremely energy efficient, but those proposed previously require upfront knowledge about the nature of the trip, road conditions and traffic information, which in reality is almost impossible to provide," Qi said.

While the UCR EMS does require trip-related information, it also gathers data in real time using onboard sensors and communications devices, rather than demanding it upfront. It is one of the first systems based on a machine learning technique called reinforcement learning (RL), and was published online Feb. 5, 2016 in the journal Transportation Research Record.

In comparison-based tests on a 20-mile commute in Southern California, the UCR EMS outperformed currently available binary mode systems, with average fuel savings of 11.9 percent. Even better, Qi said, the system gets smarter the more it's used and is not model- or driver-specific, meaning it can be applied to any PHEV driven by any individual.

"In our reinforcement learning system, the vehicle learns everything it needs to be energy efficient based on historical data. As more data are gathered and evaluated, the system becomes better at making decisions that will save on energy," Qi said.

Qi said the next phase of the research will focus on creating a cloud-based network that enables PHEVs to work together for even better results.

"Our current findings have shown how individual vehicles can learn from their historical driving behavior to operate in an energy efficient manner. The next step is to extend the proposed mode to a cloud-based vehicle network where vehicles not only learn from themselves but also each other. This will enable them to operate on even less fuel and will have a huge impact on the amount of greenhouse gases and other pollutants released," he said.

The work was done by Qi and Barth, together with Guoyuan Wu, assistant research engineer at CE-CERT; Kanok Boriboonsomsin, associate research engineer at CE-CERT; and Jeffrey Gonder, senior engineer at the National Renewable Energy Laboratory in Golden, Colo. The project was partially supported by the U. S. Department of Transportation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Riverside
Car Technology at SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CAR TECH
New algorithm improves speed and accuracy of pedestrian detection
San Diego CA (SPX) Feb 10, 2016
What if computers could recognize objects as well as the human brain could? Electrical engineers at the University of California, San Diego have taken an important step toward that goal by developing a pedestrian detection system that performs in near real-time (2-4 frames per second) and with higher accuracy (close to half the error) compared to existing systems. The technology, which incorpora ... read more


CAR TECH
One step closer to commercial edamame production in the US

Bee virus spread manmade and emanates from Europe

How roots grow

Scientists discover how plants tailor growth to the seasons

CAR TECH
Chiral magnetic effect generates quantum current

Researchers develop hack-proof RFID chips

Taiwan approves TSMC plans for $3 bn plant in China

A step towards keeping up with Moore's Law

CAR TECH
Civil aviation takes first step towards capping carbon emissions

FAA taps Raytheon for air traffic control system upgrades

Elbit, KBR contracted for U.K. military flight training program

France orders C-130J Super Hercules transports

CAR TECH
Toyota says net profit jumps to $16 bn, raises FY forecast

Chinese market electrifying for 'green' cars

New algorithm improves speed and accuracy of pedestrian detection

SUVs rev up at Delhi auto show despite pollution crackdown

CAR TECH
EU urges China to cut steel output

Georgia to build $2.5-bln Black Sea port on China's Silk Road

China-backed AIIB taps former British minister

Biggest ever trade deal signed as US seeks to counter China

CAR TECH
Recovering tropical forests a sponge for CO2: study

Clemson scientist's research on tropical forests featured in the journal Nature

Cause for hope: Secondary tropical forests put on weight fast

Study documents drought's impact on redwood forest ferns

CAR TECH
JPL researchers report on new tool to provide even better Landsat images

NASA Radar Brings a New View of World Heritage Site

DigitalGlobe Receives Early Commitments for WorldView-4 Satellite Capacity

Russia to launch Resurs-P satellite on March 12

CAR TECH
New type of nanowires, built with natural gas heating

Nanosheet growth technique could revolutionize nanomaterial production

New record in nanoelectronics at ultralow temperatures

Nano-coating makes coaxial cables lighter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.