GPS News  
STELLAR CHEMISTRY
Fresh Antimatter Study Will Help Search for Dark Matter
by Staff Writers
Geneva, Switzerland (SPX) May 29, 2020

A view of the underground ALICE detector used in the study of the antideuteron (Image: CERN)

The ALICE collaboration has presented new results on the production rates of antideuterons based on data collected at the highest collision energy delivered so far at the Large Hadron Collider.

The antideuteron is composed of an antiproton and an antineutron. The new measurements are important because the presence of antideuterons in space is a promising indirect signature of dark matter candidates. The results mark a step forward in the search for dark matter.

Recent astrophysical and cosmological results point towards dark matter being the dominant form of matter in the universe, accounting for approximately 85% of all matter. The nature of dark matter remains a great mystery, and cracking its secrets would open a new door for physics.

Detecting antideuterons in space could be an indirect signature of dark matter, since they could be produced during the annihilation or decay of neutralinos or sneutrinos, which are hypothetical dark matter particles.

Various experiments are on the hunt for antideuterons in the universe, including the AMS detector on the International Space Station. However, before inferring the existence of dark matter from the detection of these nuclei, scientists must account for both their rates of production by other sources (namely, collisions between cosmic rays and nuclei in the interstellar medium) and the rates of their annihilation caused by encountering matter on their journey.

In order to assert that the detected antideuteron is related to the presence of dark matter, the production and annihilation rates must be well understood.

By colliding protons in the LHC, ALICE scientists mimicked antideuteron production through cosmic ray collisions, and could thus measure the production rate associated with this phenomenon. These measurements provide a fundamental basis for modelling antideuteron production processes in space.

By comparing the amount of antideuterons detected with that of their matter counterparts (deuterons, which do not annihilate in the detector), they were able to determine, for the first time, the annihilation probability of low-energy antideuterons.

These measurements will contribute to future antideuteron studies in the Earth's vicinity, and help physicists determine whether they are signatures of the presence of dark matter particles, or if on the contrary they are manifestations of known phenomena.

In the future, these types of studies at ALICE could be extended to heavier antinuclei. "The LHC and the ALICE experiment represent a unique facility to study antimatter nuclei," says ALICE Spokesperson Luciano Musa. "This research will continue to provide a crucial reference for the interpretation of future astrophysical dark matter searches."

Research Report: "Measurement of the Low-Energy Antideuteron Inelastic Cross Section" and "(Anti-)Deuteron Production in pp Collisions at Sqrt(s) = 13 TeV"


Related Links
2020 Large Hadron Collider Physics conference
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Cosmic bursts unveil Universe's missing matter
Perth, Australia (SPX) May 28, 2020
The researchers have now found all of the missing 'normal' matter in the vast space between stars and galaxies, as detailed in the journal Nature. Lead author Associate Professor Jean-Pierre Macquart, from the Curtin University node of the International Centre for Radio Astronomy Research (ICRAR), said astronomers have been searching for the missing matter for almost thirty years. "We know from measurements of the Big Bang how much matter there was in the beginning of the Universe," he said. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Pesticides harm honeybee nursing behavior, larval development, video shows

'It's kind of glum': US farmers worry as crop prices dip

Japan insect enthusiast puts cricket ramen on the menu

Herding wild buffalo and cattle from space

STELLAR CHEMISTRY
Xilinx 'lifts off' with launch of industry's first 20nm space-grade FPGA for space applications

'One-way' electronic devices enter the mainstream

Huawei says 'survival' at stake after US chip restrictions

Scientists break the link between a quantum material's spin and orbital states

STELLAR CHEMISTRY
Russia begins building first stealth bomber

Senators call for investigation of KC-46 problems

U.S. Air Force scales back fitness testing, citing COVID-19 concerns

Boeing receives $27.7 million for Poseidon upgrades

STELLAR CHEMISTRY
Top German court to rule on VW 'Dieselgate' compensation

Uber says slashing jobs and trimming investment

Tesla, California appear to end standoff over restarting factory

Uber to require face masks for drivers, riders

STELLAR CHEMISTRY
Asia stocks up as lockdowns eased, Hong Kong pares early losses

US mulls 'nuclear option' as China threatens Hong Kong autonomy

Hong Kong loses US 'special status' -- what next?

Equities rally as reopenings trump geopolitical tensions

STELLAR CHEMISTRY
Tropical forests can handle the heat, up to a point

Uruguay renegotiates $3 bn pulp plant deal with Finland's UPM

With attention on virus, Amazon deforestation surges

Brazil to deploy army to fight Amazon deforestation

STELLAR CHEMISTRY
Calling for ideas for next Earth Explorer

ESA's oldest Earth-observer images Delhi airport

Volcanic eruptions reduce global rainfall

Common CFC replacements break down into persistent pollutants

STELLAR CHEMISTRY
Transporting energy through a single molecular nanowire

To make an atom-sized machine, you need a quantum mechanic

Magnetic nanoparticles help researchers remotely release adrenal hormones

New DNA origami motor breaks speed record for nano machines









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.