. GPS News .




.
TIME AND SPACE
First observational test of the 'multiverse'
by Staff Writers
London, UK (SPX) Aug 04, 2011

The signatures of a bubble collision at various stages in the analysis pipeline. A collision (top left) induces a temperature modulation in the CMB temperature map (top right). The 'blob' associated with the collision is identified by a large needlet response (bottom left), and the presence of an edge is highlighted by a large response from the edge detection algorithm (bottom right). In parallel with the edge-detection step, we perform a Bayesian parameter estimation and model selection analysis.

The theory that our universe is contained inside a bubble, and that multiple alternative universes exist inside their own bubbles - making up the 'multiverse' - is, for the first time, being tested by physicists.

Two research papers published in Physical Review Letters and Physical Review D are the first to detail how to search for signatures of other universes. Physicists are now searching for disk-like patterns in the cosmic microwave background (CMB) radiation - relic heat radiation left over from the Big Bang - which could provide tell-tale evidence of collisions between other universes and our own.

Many modern theories of fundamental physics predict that our universe is contained inside a bubble. In addition to our bubble, this `multiverse' will contain others, each of which can be thought of as containing a universe. In the other 'pocket universes' the fundamental constants, and even the basic laws of nature, might be different.

Until now, nobody had been able to find a way to efficiently search for signs of bubble universe collisions - and therefore proof of the multiverse - in the CMB radiation, as the disc-like patterns in the radiation could be located anywhere in the sky. Additionally, physicists needed to be able to test whether any patterns they detected were the result of collisions or just random patterns in the noisy data.

A team of cosmologists based at University College London (UCL), Imperial College London and the Perimeter Institute for Theoretical Physics has now tackled this problem.

"It's a very hard statistical and computational problem to search for all possible radii of the collision imprints at any possible place in the sky," says Dr Hiranya Peiris, co-author of the research from the UCL Department of Physics and Astronomy. "But that's what pricked my curiosity."

The team ran simulations of what the sky would look like with and without cosmic collisions and developed a ground-breaking algorithm to determine which fit better with the wealth of CMB data from NASA's Wilkinson Microwave Anisotropy Probe (WMAP). They put the first observational upper limit on how many bubble collision signatures there could be in the CMB sky.

Stephen Feeney, a PhD student at UCL who created the powerful computer algorithm to search for the tell-tale signatures of collisions between "bubble universes", and co-author of the research papers, said: "The work represents an opportunity to test a theory that is truly mind-blowing: that we exist within a vast multiverse, where other universes are constantly popping into existence."

One of many dilemmas facing physicists is that humans are very good at cherry-picking patterns in the data that may just be coincidence. However, the team's algorithm is much harder to fool, imposing very strict rules on whether the data fits a pattern or whether the pattern is down to chance.

Dr Daniel Mortlock, a co-author from the Department of Physics at Imperial College London, said: "It's all too easy to over-interpret interesting patterns in random data (like the 'face on Mars' that, when viewed more closely, turned out to just a normal mountain), so we took great care to assess how likely it was that the possible bubble collision signatures we found could have arisen by chance."

The authors stress that these first results are not conclusive enough either to rule out the multiverse or to definitively detect the imprint of a bubble collision. However, WMAP is not the last word: new data currently coming in from the European Space Agency's Planck satellite should help solve the puzzle.




Related Links
UCL Physics and Astronomy
Understanding Time and Space

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries








. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TIME AND SPACE
A new way to measure the expansion of the Universe
Perth, Australia (SPX) Jul 27, 2011
A PhD student from The International Centre for Radio Astronomy Research (ICRAR) in Perth has produced one of the most accurate measurements ever made of how fast the Universe is expanding. Florian Beutler, a PhD candidate with ICRAR at the University of Western Australia, has calculated how fast the Universe is growing by measuring the Hubble constant. "The Hubble constant is a key ... read more


TIME AND SPACE
Scientists Study Effects of Rising Carbon Dioxide on Rangelands

Mushroom poisoning adds to rainy French summer woes

China arrests 2,000 in food safety crackdown

China allows cooking oil prices to rise

TIME AND SPACE
Designing diamond circuits for extreme environments

Breakthrough in photonic chip research paves way for ultrafast information sharing

'Bendable' computer developed in Canada

Warmed-up organic memory transistor has larger memory capacity

TIME AND SPACE
Making airport runways safer

Boeing Delivers Milestone 737 with High-Altitude And High-Temperature Operation Features

Southampton engineers fly first printed aircraft

Rolls-Royce flies into profit

TIME AND SPACE
University of Virginia researchers uncover new catalysis site

Honda to recall over 2m vehicles in US, China

AviCoS replaces vehicle owner manuals

Japan quake helps GM profits soar in Q2

TIME AND SPACE
China remodels Silk Road city but scars run deep

Baghdad's Shorjah market is Ramadan centre, 700 years on

Organized crime a national security risk

Brazil's U.S. dollar inflows reach record

TIME AND SPACE
Fungi helped destroy forests during mass extinction 250 million years ago

Genetic evidence clears Ben Franklin

Seeing the wood for the trees: New study shows sheep in tree-ring records

DR Congo entrusts forest management to Canada's ERA

TIME AND SPACE
First of Many Miniaturized Helio Instruments For WINCS To be Delivered

La Ninas distant effects in East Africa

NASA Satellite Tracks Severity of African Drought

Tropical Storm Muifa appears huge on NASA infrared imagery

TIME AND SPACE
Pioneers get close-up view of miracle material graphene

Hydrogen may be key to growth of high-quality graphene

The wonders of graphene on display

City dwellers produce as much CO2 as countryside people do


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement