GPS News
STELLAR CHEMISTRY
First 'ghost particle' image of Milky Way galaxy captured by scientists
Two images of the Milky Way galaxy. The top is captured with visible light and the bottom is the first-ever captured with neutrinos.
First 'ghost particle' image of Milky Way galaxy captured by scientists
by Staff Writers
Washington DC (SPX) Jun 30, 2023

From visible starlight to radio waves, the Milky Way galaxy has long been observed through the various frequencies of electromagnetic radiation it emits. Scientists have now revealed a uniquely different image of our galaxy by determining the galactic origin of thousands of neutrinos - invisible "ghost particles" which exist in great quantities but normally pass straight through Earth undetected. The neutrino-based image of the Milky Way is the first of its kind: a galactic portrait made with particles of matter rather than electromagnetic energy.

The breakthrough was achieved by a collaboration of researchers using the U.S. National Science Foundation-supported IceCube Neutrino Observatory at NSF's Amundsen-Scott South Pole Station in Antarctica. The immense observatory detects the subtle signs of high-energy neutrinos from space by using thousands of networked sensors buried deep within a cubic kilometer of clear, pristine ice. The results were revealed at an event today at Drexel University and will be published tomorrow in the journal Science.

"I remember saying, 'At this point in human history, we're the first ones to see our galaxy in anything other than light,'" says Drexel University physicist Naoko Kurahashi Neilson of the moment she and two doctoral students, Steve Sclafani with Drexel and Mirco Hunnefeld with TU Dortmund University in Germany, first examined the image. Kurahashi Neilson proposed the innovative computational analysis used to generate the image and received funding to pursue her idea through a grant from NSF's Faculty Early Career Development program.

"As is so often the case, significant breakthroughs in science are enabled by advances in technology," says Denise Caldwell, director of NSF's Physics Division. "The capabilities provided by the highly sensitive IceCube detector, coupled with new data analysis tools, have given us an entirely new view of our galaxy - one that had only been hinted at before. As these capabilities continue to be refined, we can look forward to watching this picture emerge with ever-increasing resolution, potentially revealing hidden features of our galaxy never before seen by humanity."

"What's intriguing is that, unlike the case for light of any wavelength, in neutrinos, the universe outshines the nearby sources in our own galaxy," says Francis Halzen, a physicist at the University of Wisconsin-Madison and principal investigator at IceCube.

Beyond the daunting challenge of just detecting notoriously elusive neutrinos (and distinguishing them from other sorts of interstellar particles) is the even more ambitious goal of determining where they came from. When neutrinos happen to interact with the ice beneath IceCube, those rare encounters produce faint patterns of light, which IceCube can detect. Some patterns of light are highly directional and point clearly to a particular area of the sky, allowing researchers to determine the source of the neutrinos. Such interactions were the basis for the IceCube Collaboration's 2022 discovery of neutrinos that came from another galaxy 47 million light-years away.

Other interactions are far less directional and produce cascading "fuzz balls of light" in the clear ice, says Kurahashi Neilson. Her fellow IceCube Collaboration members, Sclafani and Hunnefeld, developed a machine-learning algorithm that compared the relative position, size and energy of more than 60,000 such neutrino-generated cascades of light recorded by IceCube over 10 years.

The three researchers spent over two years meticulously testing and verifying their algorithm using artificial data simulating neutrino detections. When they eventually fed the real IceCube-provided data to the algorithm, what emerged was a picture showing bright spots corresponding to locations in the Milky Way that were suspected to emit neutrinos. Those locations were in places where observed gamma rays were thought to be the byproducts of collisions between cosmic rays and interstellar gas, which theoretically should also produce neutrinos.

"A neutrino counterpart has now been measured, thus confirming what we know about our galaxy and cosmic ray sources," says Sclafani.

Over many decades, scientists have revealed countless astronomical discoveries by expanding the methods used to observe the universe. Once-revolutionary advances such as radio astronomy and infrared astronomy have been joined by a new class of observational techniques using phenomena such as gravitational waves and now, neutrinos. Kurahashi Neilson says that the neutrino-based image of the Milky Way is yet another step in that lineage of discovery. She predicts neutrino astronomy will be honed like the methods that preceded it, until it too can reveal previously unknown aspects of the universe.

"This is why we do what we do," she says. "To see something nobody has ever seen, and to understand things we haven't understood."

Research Report:Observation of high-energy neutrinos from the Galactic plane

Related Links
National Science Foundation
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Milky Way's central black hole woke up 200 years ago
Washington DC (SPX) Jun 22, 2023
Sagittarius A*, the supermassive black hole at the center of the Milky Way galaxy, is far less luminous than other black holes at the centers of galaxies we can observe, which means our galaxy's central black hole has not been actively gobbling up material around it. Yet new evidence from NASA's IXPE (Imaging X-ray Polarimetry Explorer) telescope suggests the ancient sleeping giant woke recently - about 200 years ago - to devour gas and other cosmic detritus within its reach. Sagittarius A* is mor ... read more

STELLAR CHEMISTRY
Vietnam farmers planting in the dark as heatwave looms

Brussels looks to relax curbs on genetically modified crops

We may be underestimating the climate risk to crops: researchers

China's Qu Dongyu re-elected unopposed as head of UN food agency

STELLAR CHEMISTRY
China slaps export curbs on essential chip-making metals

Dutch restrictions on chip exports set for September

Netherlands imposes new trade restrictions to block export of semiconductors to China

AI chip giant Nvidia 'extremely likely' to invest in Europe

STELLAR CHEMISTRY
Israel to buy F-35 fighter jets from U.S.

Pilot killed as fighter jet crashes during Venezuela exercise

Chinese spy balloon did not gather data over US: Pentagon

July 4th weekend celebrations to test US travel system

STELLAR CHEMISTRY
FAA clears California company's flying car for takeoff

Legal battle looms over London's expanding vehicle pollution fee

Vehicle color recognition based on neural networks and multi-scale feature fusion

Strange bedfellows: auto rivals embrace Tesla EV chargers

STELLAR CHEMISTRY
French luxury brand tycoon Bernard Arnault in China

EU ambassador regrets lack of progress with China on trade

Markets drop as China data indicates further weakness

Yellen to visit China, raising need to 'responsibly manage' ties

STELLAR CHEMISTRY
Turning over a new leaf, Colombian ranchers plant trees

Kenya's Ruto lifts six-year logging ban

Nestle steps up reforestation project in Ivory Coast

Football pitch of tropical forest lost every 5 seconds

STELLAR CHEMISTRY
Australia scraps billion-dollar satellite program

Huangshan dialogue advances sustainable development of heritage sites

China-funded prototype satellites delivered to Egypt

Maxar and Esri Expand Partnership to Visualize Precision3D in ArcGIS Living Atlas of the World

STELLAR CHEMISTRY
Single-molecule valve: a breakthrough in nanoscale control

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.