Subscribe free to our newsletters via your
. GPS News .




EXO WORLDS
Finding infant earths and potential life just got easier
by Vasyl Kacapyr for Cornell News
Ithaca NY (SPX) Dec 08, 2014


illustration only

Among the billions and billions of stars in the sky, where should astronomers look for infant Earths where life might develop? New research from Cornell University's Institute for Pale Blue Dots shows where - and when - infant Earths are most likely to be found. The paper by research associate Ramses M. Ramirez and director Lisa Kaltenegger, "The Habitable Zones of Pre-Main-Sequence Stars" will be published in the Jan. 1, 2015, issue of Astrophysical Journal Letters.

"The search for new, habitable worlds is one of the most exciting things human beings are doing today and finding infant Earths will add another fascinating piece to the puzzle of how 'Pale Blue Dots' work" says Kaltenegger, associate professor of astronomy in Cornell's College of Arts and Sciences.

The researchers found that on young worlds the Habitable Zone - the orbital region where water can be liquid on the surface of a planet and where signals of life in the atmosphere can be detected with telescopes - turns out to be located further away from the young stars these worlds orbit than previously thought.

"This increased distance from their stars means these infant planets should be able to be seen early on by the next generation of ground-based telescopes," says Ramirez. "They are easier to spot when the Habitable Zone is farther out, so we can catch them when their star is really young."

Moreover, say the researchers, since the pre-main sequence period for the coolest stars is long, up to 2.5 billion years, it's possible that life could begin on a planet during its sun's early phase and then that life could move to the planet's subsurface (or underwater) as the star's luminosity decreases.

"In the search for planets like ours out there, we are certainly in for surprises. That's what makes this search so exciting," says Kaltenegger.

To enable researchers to more easily find infant earths, the paper by Kaltenegger and Ramirez offers estimates for where one can find habitable infant Earths. As reference points, they also assess the maximum water loss for rocky planets that are at equivalent distances to Venus, Earth and Mars from our Sun.

Ramirez and Kaltenegger also found that during the early period of a solar system's development, planets that end up being in the Habitable Zone later on, when the star is older, initially can lose the equivalent of several hundred oceans of water or more if they orbit the coolest stars.

However, even if a runaway greenhouse effect is triggered - when a planet absorbs more energy from the star than it can radiate back to space, resulting in a rapid evaporation of surface water - a planet could still become habitable if water is later delivered to the planet, after the runaway phase ends.

"Our own planet gained additional water after this early runaway phase from a late, heavy bombardment of water-rich asteroids," says Ramirez. "Planets at a distance corresponding to modern Earth or Venus orbiting these cool stars could be similarly replenished later on."

Ramirez and Kaltenegger's research was supported by the Institute for Pale Blue Dots and the Simons Foundation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Images and study
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
Queen's scientist leads study of 'Super-Earth'
Belfast UK (SPX) Dec 08, 2014
Research led by an astronomer at Queen's University Belfast could pave the way in the search for life on other planets. Up to now, only space-based telescopes have been able to detect planets near the size of the Earth that pass in front of stars like the Sun. An astronomer in the Astrophysics Research Centre at Queen's University has led an international team to detect a super-Earth, a pl ... read more


EXO WORLDS
Insecticides foster 'toxic' slugs, reduce crop yields

China farmers washed away as Beijing taps water from south

An organic garden of plenty in Mali's arid soil

Lethal control of wolves backfires on livestock

EXO WORLDS
Unusual electronic state found in new class of unconventional superconductors

Computers that teach by example

High photosensitivity 2-D-few-layered molybdenum diselenide phototransistors

US tech firm Intel plans $1.6 bn investment in China

EXO WORLDS
New Patent For Aeroscraft Air Bearing Landing System

Navy wins award for F-35 canopy making process

Sikorsky, India to negotiate naval helocopter buy

Study: motion distracts hummingbird hovering skills

EXO WORLDS
Paris mayor wants limits on cars in centre, end to diesel

US city of Portland sues Uber

Dongfeng, Huawei partner for Internet-enabled cars

Uber now valued at $40 bn

EXO WORLDS
World's largest container ship leaves Shanghai for Europe

China imports fall and export growth slows in November

Britain launches new 'Google tax' on multinationals

Hong Kong protesters on hunger strike after violent clashes

EXO WORLDS
Latin America pledges to reforest 20 mn hectares by 2020

Logging destabilizes forest soil carbon over time

55 percent of carbon in Amazon may be at risk

Reduced logging supports diversity almost as well as leaving them alone

EXO WORLDS
ADS to build Falcon Eye Earth-observation system for UAE

NASA's CATS: A Launch of Exceptional Teamwork

On solid ground With ESA On Watch

China launches CBERS-4 satellite on Long March rockets' 200th mission

EXO WORLDS
'Giant' charge density disturbances discovered in nanomaterials

LLNL team develops efficient method to produce nanoporous metals

Thin film produces new chemistry in 'nanoreactor'

Ultra-short X-ray pulses explore the nano world




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.