GPS News  
TECTONICS
Fate of sinking tectonic plates is revealed
by Staff Writers
Austin TX (SPX) Nov 12, 2021

Researchers including The University of Texas at Austin have published a study in Nature that says subducting tectonic plates become segmented like a slinky snake, in a process similar to geologic boudinage (pictured) but on a much larger scale. Credit: Haakon Fossen

Our world's surface is a jumble of jostling tectonic plates, with new ones emerging as others are pulled under. The ongoing cycle keeps our continents in motion and drives life on Earth. But what happens when a plate disappears into the planet's interior?

The question has long puzzled scientists because conventional wisdom said that sinking tectonic plates must remain intact to keep pulling on the portion behind it, but according to geophysical evidence, they are destroyed.

Now, in a study published Nov. 11 in Nature, scientists say they've found an answer that reconciles the two stories: Plates are significantly weakened as they sink but not so much that they break apart entirely.

The finding came after scientists put tectonic plates through a computer-generated gauntlet of destructive geologic forces. The model showed that as the plate enters the mantle, it bends abruptly downward, cracking its cold, brittle back. At the same time, the bending changes the fine grain structure of the rock along its underbelly, leaving it weakened. Combined, the stresses pinch the plate along its weak points, leaving it mostly intact but segmented like a slinky snake.

This means the plate continues to be pulled under despite becoming folded and distorted.

According to the researchers, the model predicted a scenario that matches observations from Japan. Studies of the region where the Pacific tectonic plate dives - or subducts - under Japan have turned up large cracks where the plate bends downward, and they have shown signs of weaker material underneath. Deep seismic imaging conducted by The University of Texas at Austin's Steve Grand has also revealed tectonic shapes in the Earth's mantle under Japan that appear a close match for the slinky snake in the model.

Co-author Thorsten Becker, a professor in UT's Jackson School of Geosciences, said that the study does not necessarily close the book on what happens to subducting plates, but it certainly gives a compelling case to explain several important geologic processes.

"It's an example of the power of computational geosciences," said Becker who assisted in developing the model and is a faculty associate at UT's Oden Institute for Computational Engineering and Sciences. "We combined these two processes that geology and rock mechanics are telling us are happening, and we learned something about the general physics of how the Earth works that we wouldn't have expected. As a physicist, I find that exciting."

The study's lead author, Taras Gerya, a professor of geophysics at ETH Zurich, added that until now, geophysicists had lacked a comprehensive explanation for how tectonic plates bend without breaking.

Things got interesting when the researchers ran their simulations with a hotter interior, similar to the early Earth. In these simulations, the tectonic snake segments made it only a few miles into the mantle before breaking off. That means that subduction would have occurred intermittently, raising the possibility that modern plate tectonics began only within the past billion years.

"Personally, I think there are a lot of good arguments for plate tectonics being much older," Becker said, "but the mechanism revealed by our model suggests things might be more sensitive to the temperature of the mantle than we thought, and that, I think, could lead to interesting new avenues of discussion."

Becker and Gerya were joined by David Bercovici, a geophysicist at Yale University whose investigation into how rock grains are altered in the deep mantle helped motivate the research. The study is based on a two-dimensional computer model of plate tectonics incorporating Bercovici's rock deformation research and other plate-weakening mechanics. The researchers are now studying the phenomena using 3D models and plan to investigate what those models can tell them about the occurrence of earthquakes.

The research was supported by grants from the Swiss National Science Foundation, ETH Zurich, and the U.S. National Science Foundation. The simulations were run on high-performance computing clusters at ETH Zurich.

Research Report: "Dynamic slab segmentation due to brittle-ductile damage in the outer rise"


Related Links
University of Texas at Austin
Tectonic Science and News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECTONICS
Land ahoy: study shows the first continents bobbed to the surface more than 3 billion years ago
Melbourne, Australia (SPX) Nov 09, 2021
Most people know that the land masses on which we all live represent just 30% of Earth's surface, and the rest is covered by oceans. The emergence of the continents was a pivotal moment in the history of life on Earth, not least because they are the humble abode of most humans. But it's still not clear exactly when these continental landmasses first appeared on Earth, and what tectonic processes built them. Our research, published in Proceedings of the National Academy of Sciences, estimates ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Climate change rocks agricultural commodity markets

Organic farmers find fertile ground in North Africa

African Sahelian farmers diversify crops to adapt to climate change

Spain unveils plan for revival of crisis-hit lagoon

TECTONICS
New algorithms advance the computing power of early-stage quantum computers

Why the world needs a better LED light bulb

Adding sound to quantum simulations

Chip maker TSMC, Sony partner on new $7 bn plant in Japan

TECTONICS
Steady need for new planes despite pandemic: Airbus

Airbus and its partners demonstrate how sharing the skies can save airlines fuel and reduce CO2 emissions

Eagles collaborate in unique high-altitude simulation training

EU's 'green' chief challenged over private jet trips

TECTONICS
Top carmaker Toyota defends skipping COP26 emissions pledge

Producers target 2040 end date for polluting vehicles

DoorDash takes aim at Europe with purchase of Wolt

Battle the algorithms: China's delivery riders on the edge

TECTONICS
Asian markets rise on outlook hope but eyes on inflation

Alibaba, JD enjoy record Singles Day despite tech crackdown

Evergrande makes overdue interest payments: report

Asian markets rise on outlook hope but eyes on inflation

TECTONICS
Amazon deforestation hits monthly record in Brazil

Deforestation drives increasingly deadly heat in Indonesia: study

Climate change and fires: Bolivia's forests in peril

'We can't live in a world without the Amazon': scientist

TECTONICS
Student's research upends understanding of upper atmospheric wind

NASA taps BlackSky for rapid revisit satellite imaging data

Planet to acquire VanderSat to deliver advanced agriculture data products to customers

Warming temperatures increasingly alter structure of atmosphere

TECTONICS
The secret of ultralight but stiff sandwich nanotubes

AFRL Nano Team takes lead in building stronger ties with India

Striking Gold: A Pathway to Stable, High-Activity Catalysts from Gold Nanoclusters









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.