GPS News  
TIME AND SPACE
Faster-than-Expected Expansion of the Universe Supported
by Staff Writers
Garching, Germany (SPX) Jan 27, 2017


This montage shows the five lensed quasars and the foreground galaxies studied by the H0LiCOW collaboration. Using these objects astronomers were able to make an independent measurement of the Hubble constant. They calculated that the Universe is actually expanding faster than expected on the basis of our cosmological model. Image courtesy NASA, ESA, Suyu (Max Planck Institute for Astrophysics), Auger (University of Cambridge)

By using galaxies as giant gravitational lenses, an international group of astronomers including researchers at the Max Planck Institute for Astrophysics have made an independent measurement of how fast the universe is expanding. The newly measured expansion rate for the local universe is consistent with earlier findings. These are, however, in intriguing disagreement with measurements of the early universe. This hints at a fundamental problem at the very heart of our understanding of the cosmos.

The Hubble constant - the rate at which the universe is expanding - is one of the fundamental quantities describing our universe. A group of astronomers, the H0LiCOW collaboration, used the NASA/ESA Hubble Space Telescope and other telescopes in space and on the ground to observe five galaxies in order to arrive at an independent measurement of the Hubble constant. The new measurement is completely independent of - but in excellent agreement with - other measurements of the Hubble constant in the local universe that used Cepheid variable stars and supernovae as points of reference.

The collaboration is led by Sherry Suyu, who recently moved from the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) in Taipei (Taiwan) to Garching (Germany) where she works now at the Max Planck Institute for Astrophysics and the Technical University of Munich as group leader and tenure track professor in the Max Planck@TUM programme.

However, the value measured by Suyu and her team, as well as those measured using Cepheids and supernovae, are different from the measurement made by the ESA Planck satellite. But there is an important distinction - Planck measured the Hubble constant for the early universe by observing the cosmic microwave background.

While the value for the Hubble constant determined by Planck fits with our current understanding of the cosmos, the values obtained by the different groups of astronomers for the local universe are in disagreement with our accepted theoretical model of the universe.

"The expansion rate of the universe is now starting to be measured in different ways with such high precision that actual discrepancies may possibly point towards new physics beyond our current knowledge of the universe," elaborates Suyu.

The targets of the study were massive galaxies positioned between Earth and very distant quasars - incredibly luminous galaxy cores. The light from the more distant quasars is bent around the huge masses of the galaxies as a result of strong gravitational lensing - an effect first predicted by Swiss astronomer Fritz Zwicky 80 years ago. This creates multiple images of the background quasar and its host galaxy, some smeared into extended arcs.

Because galaxies do not create perfectly spherical distortions in the fabric of space and the lensing galaxies and quasars are not perfectly aligned, the light from the different images of the background quasar follows paths which have slightly different lengths.

Since the brightness of quasars changes over time, astronomers can see the different images flicker at different times, the delays between them depending on the lengths of the paths the light has taken. These delays are directly related to the value of the Hubble constant.

"Our method is the most simple and direct way to measure the Hubble constant as it only uses geometry and General Relativity, no other assumptions," explains co-lead Frederic Courbin from EPFL, Switzerland.

Using the accurate measurements of the time delays between the multiple images, as well as computer models, has allowed the team to determine the Hubble constant to an impressively high precision: 3.8%."To reach that accuracy, we even considered the lensing effects of all other nearby galaxies in our analysis," explains Stefan Hilbert from the Excellence Cluster Universe.

"An accurate measurement of the Hubble constant is one of the most sought-after prizes in cosmological research today," highlights team member Vivien Bonvin, from EPFL, Switzerland. And Suyu adds: "The Hubble constant is crucial for modern astronomy as it can help to confirm or refute whether our picture of the universe - composed of dark energy, dark matter and normal matter - is actually correct, or if we are missing something fundamental."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Max Planck Institute For Astrophysics
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Arecibo Observatory Casts New Light on Cosmic Microwave Background
Columbia MA (SPX) Jan 05, 2017
Arecibo Observatory observations of galactic neutral hydrogen structure confirm the discovery of an unexpected contribution to the measurements of the cosmic microwave background observed by the WMAP and Planck spacecraft. An accurate understanding of the foreground (galactic) sources of radiation observed by these two spacecraft is essential for extracting information about the small-scal ... read more


TIME AND SPACE
Pigs and chocolate: Using math to solve problems in farming

Corn turning French hamsters into deranged cannibals: research

Nanoparticle fertilizer could contribute to new 'green revolution'

Crop achilles' heel costs farmers 10 percent of potential yield

TIME AND SPACE
Electron movement on helium may impact the future of quantum computing

Theorists propose new class of topological metals with exotic electronic properties

Apple legal fight with Qualcomm spreads to China

First step towards photonic quantum network

TIME AND SPACE
KAI taps Texstars to develop KF-X fighter transparencies

Saudi Arabia unveils next-generation F-15 warplane

Pentagon chief orders review of F-35 fighter program

State Dept. approves $525 million aerostat sale to Saudi Arabia

TIME AND SPACE
German prosecutors say probing former VW CEO for fraud

Daimler to supply self-driving cars for Uber

Paris experiments with driverless buses

Society set for head-on collision with driverless cars

TIME AND SPACE
Japan posts first annual trade surplus since Fukushima

Tech firms unite to challenge Trump on immigration

An uneasy Silicon Valley denounces Trump immigration ban

Trump economic advisor bashes Germany on currency: report

TIME AND SPACE
High-tech maps of tropical forest diversity identify new conservation targets

Risk of tree species disappearing in central Africa 'a major concern,' say researchers

Forests 'held their breath' during global warming hiatus, research shows

Trees supplement income for rural farmers in Africa

TIME AND SPACE
NASA measures 'dust on snow' to help manage Colorado River Basin water supplies

Wind satellite heads for final testing

NASA Airborne Mission Chases Air Pollution Through the Seasons

Research journey to the center of the Earth

TIME AND SPACE
NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms

Nanocavity and atomically thin materials advance tech for chip-scale light sources

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale

New low-cost technique converts bulk alloys to oxide nanowires









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.