GPS News  
ENERGY TECH
Extinguishing a fusion fire in a flash of light
by Staff Writers
Kyoto, Japan (SPX) Oct 28, 2016


Comparison of experimentally measured radiated power emission patterns inside the DIII-D tokamak with upper gas injection (left) and lower gas injection (right). Arrows indicates gas valve locations, the white border represents the plasma boundary, and the light blue border shows the vacuum vessel. Red coloring indicates the strongest emission, blue weakest. Image courtesy General Atomics. For a larger version of this image please go here.

Fusion energy researchers have discovered that they can rapidly extinguish and cool a magnetically confined fusion plasma hotter than the center of the sun by injecting a large quantity of neon gas to prevent damage to fusion-energy devices when there is a loss of plasma equilibrium.

"We have to quickly cool a 100-million degree gas undergoing fusion in roughly 1/1000 of a second," said General Atomics scientist Nicholas Eidietis, "So when you have to shut down a fusion plasma that fast you have to be very careful of where all that energy is going to go."

Extinguishing these fusion fires converts the plasma heat into an intense flash of light. Ideally, this intense flash uniformly illuminates the interior wall of the fusion device to avoid focusing too much energy on any one location, where it could cause damage.

It's the difference between a 50-watt light bulb and a 50-watt laser: Both produce the same amount of power, but only one will melt metal and damage the fusion reactor.The complicated physics of how the neon gas is injected from localized valves and spreads around inside the plasma, how the plasma heats the neon, and how the neon sheds the heat as light has recently been modeled by a team working at the DIII-D National Fusion Facility in San Diego (Figure 1).

"This modeling is essential to help us understand what we are seeing in present fusion experiments so that we can confidently predict how a thermal quench will occur in ITER," said Val Izzo of University of California-San Diego (UCSD), who, along with Eidietis, led the team of UCSD and General Atomics researchers.

Their results will be presented at the 58th annual conference of the American Physical Society Division of Plasma Physics, Oct. 31-Nov. 4.

The physics models simulate the complex interaction of the fusion plasma and injected neon gas in the DIII-D tokamak experiment. A controlled rapid cooling of the plasma is most likely to be needed if there is a loss of equilibrium caused by the growth of unwanted helical bundles of magnetic field called islands.

In DIII-D experiments, pre-existing islands do not appear to impede the overall effectiveness of plasma cooling, but simulations indicate that details of the relative position between the island and the injection location might still affect the spreading of the neon.

One of the most important findings of the simulations is that the neon spreading speeds up when the original island breaks up into a series of smaller islands.

In experiments researchers also showed that neon spreads more uniformly when it's introduced near the top of the device (left figure) instead of the bottom (right figure), increasing the desired uniformity of plasma cooling.

These experiments and modeling efforts address a critical issue for protecting machine components from damage when magnetic instabilities arise in future large tokamaks such as ITER, which is now being built in France to demonstrate the feasibility of fusion as a new source of clean and virtually unlimited energy.

Abstract YI2.00001: Poloidal radiation asymmetries during disruption mitigation by massive gas injection on the DIII-D tokamak


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Physical Society
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Launching fusion reactions without a central magnet, or solenoid
Washington DC (SPX) Oct 28, 2016
The tokamak is an experimental chamber that holds a gas of energetic charged particles, plasma, for developing energy production from nuclear fusion. Most large tokamaks create the plasma with solenoids - large magnetic coils that wind down the center of the vessels and inject the current that starts the plasma and completes the magnetic field that holds the superhot gas in place. But future tok ... read more


ENERGY TECH
Report reveals a big dependence on freshwater fish for global food security

Australia's richest woman ups bid for cattle empire

High levels of algae toxins in San Francisco Bay shellfish

How food affects political regimes

ENERGY TECH
Making silicon-germanium core fibers a reality

A new class of materials could realize quantum computers

Flexible optical design method for superconducting nanowire single-photon detectors

Exploring defects in nanoscale devices for possible quantum computing applications

ENERGY TECH
Britain backs Heathrow airport expansion despite splits

U.K. Typhoon enhancements enter operational evaluation phase

Joint Strike Fighter an instrument of Power Projection, not just another fighter

Death sentence for Heathrow demolition village

ENERGY TECH
Chinese ride-share king Didi Chuxing could go global

Long-vanished German car brand joins electric race

US judge approves massive VW emissions settlement

Driverless truck from Uber's Otto makes Colorado beer delivery

ENERGY TECH
Belgium's Wallonia misses EU 'ultimatum' on Canada trade pact

Belgian leaders near consensus for EU-Canada trade deal

Indian washermen keep tradition alive despite daily grind

EU-Canada trade summit 'still possible' despite holdout Belgium

ENERGY TECH
Brazil land grab threatens isolated tribes: activists

The fight against deforestation: Why are Congolese farmers clearing forest?

Deforestation in Amazon going undetected by Brazilian monitors

'Goldilocks fires' can enhance biodiversity in Western forests

ENERGY TECH
NASA satellite sees sulfur dioxide diffuse across northern Iraq

The future of radar - scientific benefits and potential of TerraSAR-X and TanDEM-X

FSU geologist explores minerals below Earth's surface

Airbus Defence and Space-built PeruSAT-1 delivers first images

ENERGY TECH
A tiny machine

Nanoantenna lighting-rod effect produces fast optical switches

Nanotechnology for energy materials: Electrodes like leaf veins

Electron beam microscope directly writes nanoscale features in liquid with metal ink









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.