GPS News  
ENERGY TECH
Extending a battery's lifetime with heat
by Staff Writers
Washington DC (SPX) Oct 07, 2015


This image shows naked-eye observation of amorphous/fractal lithium dendrites. Image courtesy Asghar Aryanfar. For a larger version of this image please go here.

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow tiny, branch-like filaments called dendrites, causing short circuits that kill the battery or even ignite it in flames.

But thanks to new experiments and computer simulations, researchers from the California Institute of Technology have explored in detail how higher temperatures can break down these dendrites - and possibly extend battery lifetimes.

A battery cell consists of a positive and negative electrode, called the cathode and anode. As the battery produces electrical current, electrons flow from the anode through a circuit outside the battery and back into the cathode. Having lost the electrons that are generating the current, some of the atoms in the anode - an electrically conductive metal like lithium - become ions that then travel to the cathode, moving through a conductive liquid medium called an electrolyte.

Recharging the battery reverses the process, and the ions travel back and stick onto the anode. But when they do, the ions don't attach evenly. Instead, they form microscopic bumps that eventually grow into long branches after multiple recharging cycles. When these dendrites reach and contact the cathode, they form a short circuit. Electrical current now flows across the dendrites instead of the external circuit, rendering the battery useless and dead.

The current also heats up the dendrites, and because the electrolyte tends to be flammable, the dendrites can ignite. Even if the dendrites don't short circuit the battery, they can break off from the anode entirely and float around in the electrolyte. In this way, the anode loses material, and the battery can't store as much energy.

"Dendrites are hazardous and reduce the capacity of rechargeable batteries," said Asghar Aryanfar, a scientist at Caltech, who led the new study that's published this week on the cover of The Journal of Chemical Physics, from AIP Publishing. Although the researchers looked at lithium batteries, which are among the most efficient kind, their results can be applied broadly. "The dendrite problem is general to all rechargeable batteries," he said.

The researchers grew lithium dendrites on a test battery and heated them over a couple days. They found that temperatures up to 55 degrees Celsius shortened the dendrites by as much as 36 percent. To figure out what exactly caused this shrinkage, the researchers used a computer to simulate the effect of heat on the individual lithium atoms that comprise a dendrite, which was modeled with the simple, idealized geometry of a pyramid.

The simulations showed that increased temperatures triggered the atoms to move around in two ways. The atom at the tip of the pyramid can drop to lower levels. Or, an atom at a lower level can move and leave behind a vacant spot, which is then filled by another atom. The atoms shuffle around, generating enough motion to topple the dendrite.

By quantifying how much energy is needed to change the structure of the dendrite, Aryanfar said, researchers can better understand its structural characteristics. And while many factors affect a battery's longevity at high temperatures - such as its tendency to discharge on its own or the occurrence of other chemical reactions on the side - this new work shows that to revitalize a battery, all you might need is some extra heat.

The article, "Annealing kinetics of electrodeposited lithium dendrites," is authored by Asghar Aryanfar, Tao Cheng, Agustin J. Colussi, Boris V. Merinov, William A. Goddard III and Michael R. Hoffmann. It will be published in The Journal of Chemical Physics on October 1, 2015 (DOI: 10.1063/1.4930014).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Improved fuel structure reduces explosive qualities
Washington DC (SPX) Oct 07, 2015
The dangers of explosive fuel could soon be reduced with the development of a new material that is comprised of extremely long polymer chains that can reduce fuel misting and consequential explosiveness. The polymers of which the material is comprised could make the handling of fuel much safer, and reduce the injury and destruction that results from a collision. While it is well-known that ... read more


ENERGY TECH
Plant pest reprograms the roots

Tillage timing influences nitrogen availability and loss on organic farms

Climate-linked insurance a boon for poor farmers

Researchers find key link in understanding agriculture pests

ENERGY TECH
Liquid cooling moves onto the chip for denser electronics

Graphene teams up with 2D crystals for faster data communications

Nanoscale photodetector could boost capacity of photonic circuits

New way of retaining quantum memories stored in light

ENERGY TECH
S-97 Raider helicopter to be displayed at AUSA expo

Lockheed Martin brings F-16V to Indonesia

F-35 ejection seats raise worries on Capitol Hill

Northrop Grumman produces center fuselage for Japanese F-35

ENERGY TECH
Uber says will expand service to 100 Chinese cities

Scandal-hit VW needs more than a year to fix all cars

Could candle soot power electric vehicles

Toyota unveils self-driving car

ENERGY TECH
Amazon opens online shop for handmade goods

Japan's Abe hails new trade era, hopes China will join pact

Rare grey pearls fetch $5.27 million in Hong Kong auction

WageSpot app pulls back curtain on employee pay

ENERGY TECH
Broadleaf trees show reduced sensitivity to global warming

Study reveals answers for managing Guam's threatened native trees

Large trees - key climate influencers - die first in drought

NASA/USGS Mission Helps Answer: What Is a Forest

ENERGY TECH
New study indicates Earth's inner core was formed 1-1.5 billion years ago

China launches commercial remote-sensing satellites

Indonesia launches indigenous satellite

SMOS meets ocean monsters

ENERGY TECH
Pirouetting in the spotlight

Nanocellulose materials by design

Smaller is better for nanotube analysis

Scientists build wrench 1.7 nanometers wide









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.