Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Explosive breakthrough in research on molecular recognition
by Staff Writers
Edmonton, Canada (SPX) Feb 15, 2013


Dr. Thomas Thundat.

Ever wonder how sometimes people still get through security with explosives on their person? Research done in the University of Alberta's Department of Chemical and Materials Engineering has revealed a new way to better detect these molecules associated with explosive mixtures.

A team of researchers including post-doctoral fellows Seonghwan Kim, Dongkyu Lee and Xuchen Liu, with research associate Charles Van Neste, visiting professor, Sangmin Jeon from the Pohang University of Science and Technology (South Korea), and Department of Chemical and Materials Engineering professor Thomas Thundat, has found a method of using receptor-free nanomechanical infrared spectroscopy to increase recognition of chemical molecules in explosive mixtures.

Detecting trace amounts of explosives with mixed molecules presents a formidable challenge for sensors with chemical coatings. The nanomechanical infrared spectroscopy used by the Univesity of Alberta research team provides higher selectivity in molecular detection by measuring the photothermal effect of the absorbed molecules.

Thundat, who holds the Canadian Excellence Research Chair in Oil Sands Molecular Engineering, says the spectroscopy looks at the physical nature of the molecule and "even if there are mixed molecules, we can detect specific molecules using this method."

Seonghwan (Sam) Kim explained that conventional sensors based on coatings generally cannot detect specific molecules in complex mixtures if the concentration of interfering molecules is five times greater than the target molecules.

The detection sensitivity and selectivity are drastically increased using the high-power infrared laser because the photothermal signal comes from the absorption of infrared photons and nonradiative decay processes. Using this method, a few trillionths of a gram of explosive molecules can now be detected in a complex mixture even if there is a higher concentration of other interfering molecules.

The research team's findings are published in Scientific Reports by Nature Publishing Group on January 23, 2013.

The research team's current work looks at detecting biomolecules and hydrocarbons in the oil industry and nerve gas stimulants (DMMP), which can be found in household radiators, gasoline, and fabric softeners, for example. The team also hopes to develop a hand-held device for chemical detection that could be utilized in fields such as security, health care and environmental protection.

The full article as published in Nature Scientific Reports can be found online here.

.


Related Links
University of Alberta's
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Researchers strain to improve electrical material and it's worth it
Champaign IL (SPX) Feb 15, 2013
Like turning coal to diamond, adding pressure to an electrical material enhances its properties. Now, University of Illinois at Urbana-Champaign researchers have devised a method of making ferroelectric thin films with twice the strain, resulting in exceptional performance. Led by Lane Martin, a professor of materials science and engineering, the group published its results in the journal ... read more


TECH SPACE
Mexico to slaughter a half million chickens over bird flu

Agrichemical giant Syngenta faults EU bee plan

X-rays reveal uptake of nanoparticles by soya bean crops

Widely used nanoparticles enter soybean plants from farm soil

TECH SPACE
Building a biochemistry lab on a chip

Cell circuits remember their history

New materials may be computer breakthrough

Researchers create 'building block' of quanutm networks

TECH SPACE
Boeing and Elbit Systems to Collaborate on Aircraft Defense Solutions

F-35A Completes 3-Year Clean Wing Flutter Testing Program

E-2D Advanced Hawkeye Approved For Full-Rate Production

Major fighter jet deal, trade dominate Hollande's India trip

TECH SPACE
Virtual vehicle vibrations

NYC looks at electric vehicle charging

Nissan profit tumbles on China, Europe woes

Japan's Suzuki sees April-December net profit rise 19%

TECH SPACE
Private gold prospecting catching on

Australia jails China executive for insider trading

Global gold demand falls in 2012: WGC report

Amazon seeks relaxation of India e-commerce rules

TECH SPACE
Lungs of the planet reveal their true sensitivity to global warming

Southwest regional warming likely cause of pinyon pine cone decline

Tree die-off triggered by hotter temperatures

Taiwan's 'King of the Trees' fights for the forests

TECH SPACE
USGS Ready To Start Landsat 8 Science Program

Orbital-Built Landsat Satellite Launched

LDCM 'Doing Great' in Orbit

US launches Earth observation satellite

TECH SPACE
Artificial atoms allow for magnetic resonance on individual cells

Giving transplanted cells a nanotech checkup

Boston College researchers' unique nanostructure produces novel 'plasmonic halos'

Using single quantum dots to probe nanowires




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement