GPS News  
STELLAR CHEMISTRY
Explaining the increasing temperature of cooling granular gases
by Staff Writers
Leicester UK (SPX) Mar 02, 2018

illustration only

A Leicester mathematician has developed a theory to explain 'heating by cooling', where the temperature of a granular gas increases while the total energy drops down - a peculiar phenomenon which can be observed both on Earth and in space.

Granular gases are one of the few examples where this scientific mystery can be observed. These systems are widely spread in nature in the form of aerosols and smoke on the Earth, or in the form of interstellar dust, planetary rings and proto-planetary discs in space.

The stunning 'heating by cooling' effect corresponds, in physical terms, to a negative heat capacity. Aggregating granular gases is the second object in the world, after gravitating systems, which manifests this astonishing property.

"From secondary school we are taught that temperature means energy - the higher the temperature, the larger the energy. If a system loses energy, its temperature drops down," says Professor Nikolai Brilliantov from the University of Leicester's Department of Mathematics, who led the research. "Surprisingly, this is not always true for granular gases."

The international group of scientists has provided a vital clue on how granular gases function and demonstrate this mysterious quality in a paper published in the journal, Nature Communications, where they have built a solid mathematical foundation of the phenomenon.

They have elaborated a novel mathematical tool - generalised Smoluchowski equations. While classical Smoluchowski equations, which have been known for more than a century, deal with evolution of agglomerates concentration only, the new equations describe the evolution of the agglomerates temperature as well.

The direct microscopic modelling of the system, by extensive computer simulations, has confirmed the existence of this surprising regime and other predictions of the theory.

It has also been shown that, in spite of its peculiarity, 'heating by cooling' may be observed for many systems at natural conditions. However, the inter-particle forces have to comply with an important prerequisite - the attraction strength should increase with the agglomerates size.

"Understanding different regimes of the evolution of aggregating granular gases is important to comprehend numerous natural phenomena where these systems are involved," adds Professor Brilliantov.

Research Report: 'Increasing temperature of cooling granular gases'


Related Links
University of Leicester
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
XMM-Newton spies first clear X-Ray flares from massive stellar lighthouse
Paris (ESA) Feb 28, 2018
In 2014, ESA's XMM-Newton spotted X-rays emanating from the massive star Rho Ophiuchi A and, last year, found these to ebb and flow periodically in the form of intense flares - both unexpected results. The team has now used ESO's Very Large Telescope to find that the star boasts a strong magnetic field, confirming its status as a cosmic lighthouse. Stars like the Sun are known to produce strong X-ray flares, but massive stars appear to be very different. In stars upwards of eight solar masses X-ra ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
EU food agency says three pesticides harm bees as ban calls grow

The secret to tripling the number of grains in sorghum and perhaps other staple crops

'Noah's Ark' seed vault chalks up a million crop varieties

New approach to improve nitrogen use, enhance yield, and promote flowering in rice

STELLAR CHEMISTRY
New technology standard could shape the future of electronics design

Qualcomm open to further takeover talks if Broadcom boosts price

Forging a quantum leap in quantum communication

Antiferromagnets prove their potential for spin-based information technology

STELLAR CHEMISTRY
Trump, Boeing finalize cheaper deal for new Air Force One

Lockheed awarded $158M for support of U.S., foreign F-35 programs

Air Force awards contract for jet fighter training programs

France to block Chinese group taking control of Toulouse airport

STELLAR CHEMISTRY
German court paves way for diesel driving bans

Car-mad Germany anxious as court to rule on diesel bans

Rome to ban diesel cars from 2024: mayor

Germany cleared for greener public transit

STELLAR CHEMISTRY
US, China clash on tariffs on Chinese aluminum foil

Standard Chartered brings back dividends as profits jump

Germany 'watchful' of Chinese investment in Daimler

China factory expansion slows to 19-month low in February

STELLAR CHEMISTRY
Geological change confirmed as factor behind extensive diversity in tropical rainforests

Reforesting US topsoils store massive amounts of carbon, with potential for much more

Drier conditions could doom Rocky Mountain spruce and fir trees

Tropical trees use unique method to resist drought

STELLAR CHEMISTRY
NASA space laser completes 2,000-mile road trip

How does GEOS-5-based planetary boundary layer height and humidity vary across China?

New partnership aids sustainable growth with earth observations

CloudSat Exits the 'A-Train'

STELLAR CHEMISTRY
Researchers invent light-emitting nanoantennas

Nanomushroom sensors: One material, many applications

USTC realizes strong indirect coupling in distant nanomechanical resonators

Scalable and cost-effective manufacturing of thin film devices









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.