GPS News  
STELLAR CHEMISTRY
Engineers Solve Excessive Heat Removal from NASA's Webb Telescope
by Eric Villard for GSFC News
Greenbelt MD (SPX) Jun 07, 2018

illustration only

How will NASA's James Webb Space Telescope shed the heat generated by its science instruments and their supporting electronics? To anyone who is not an engineer or scientist, the answer might be complex and "baffling," and it turns out the process is exactly that.

Webb's four science instruments are held within a support structure called the integrated science instrument module (ISIM), located behind the telescope's primary mirror. The ISIM and Webb's optics form the science payload of the observatory. To keep heat away from the sensitive instruments, a majority of the electronics used to power and operate the instruments are housed in a compartment below ISIM, where specially designed baffles direct the heat safely into space and away from any cold surfaces of the observatory.

The baffles essentially act as mirrors to reflect the heat (infrared radiation) outward in a specific direction. If that sounds familiar, it is because Webb's mirrors will do very much the same thing - but instead of reflecting the infrared light into space, they will guide it with pinpoint accuracy to the telescope's science instruments.

"Gold has a very high reflectivity in the infrared spectrum range, so it is ideal for directing heat," explained Matthew Stephens, a mechanical systems engineer for Webb at NASA's Goddard Space Flight Center in Greenbelt, Md. "This is the same reason all of the primary, secondary, and tertiary mirrors are gold-coated."

The engineers in this photo are reinstalling the baffles, which had been previously removed and safely stored in a clean environment to protect them from any contamination during integration and testing of the science payload. The clear plastic sheets placed over the baffles will protect them from any contamination during the remaining integration and testing phases for the observatory.

The engineers had to reinstall the baffles before Webb's science payload and its spacecraft element (the combined spacecraft bus and sunshield) are integrated at Northrop Grumman Aerospace Systems in Redondo Beach, California, where both halves of the observatory currently reside. If the engineers wait until after integration, Webb's tennis-court-sized sunshield will obstruct the ISIM electronics compartment and make reinstalling the baffles much more difficult.

NASA's James Webb Space Telescope will be the world's next great space science observatory. Webb will solve mysteries of our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international project led by NASA with its partners, the European Space Agency (ESA) and the Canadian Space Agency (CSA).


Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Greenland Telescope opens new era of Arctic astronomy
Boston MA (SPX) Jun 01, 2018
To study the most extreme objects in the Universe, astronomers sometimes have to go to some extreme places themselves. Over the past several months, a team of scientists has braved frigid temperatures to set up and observe with a new radio telescope in Greenland. Taking advantage of excellent atmospheric conditions, the Greenland Telescope is designed to detect radio waves from stars, star-forming regions, galaxies and the vicinity of black holes. One of its primary goals is to take the first imag ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Alibaba shows off automated wine store in Hong Kong

Sugarcane pest produces foam to protect itself from heat

Scientists boost crop production by 47 percent by speeding up photorespiration

Bayer to ditch Monsanto name after mega-merger

STELLAR CHEMISTRY
Novel insulators with conducting edges

Toshiba completes $21 bn sale of chip unit

Time crystals may hold secret to coherence in quantum computing

Switched on leads to breakthrough for spintronics

STELLAR CHEMISTRY
Rolls-Royce to deliver V-22 Osprey engines for U.S. military

Zero 2 Infinity completed another successful launch from Europe's Stratoport, this time for Airbus

Taiwan F-16 fighter jet crashes, killing pilot

US search firm says to end MH370 hunt in 'coming days'

STELLAR CHEMISTRY
Electric vehicle market exposed to risk from violence

New material could replace expensive platinum catalysts used in hydrogen cars

Hamburg leads charge with Germany's first diesel ban

Waymo adds 62,000 vehicles for autonomous taxi service

STELLAR CHEMISTRY
Eurozone inflation leaps higher delivering 'headache' to ECB

China warns US against tariffs as trade talks end

China lowers tariffs, rejects US trade war escalation

EU joins global battle against Trump tariff onslaught

STELLAR CHEMISTRY
New research finds tall and older Amazonian forests more resistant to droughts

Zangbeto: voodoo saviour of Benin's mangroves

New technique reveals details of forest fire recovery

Forest loss in one part of US can harm trees on the opposite coast

STELLAR CHEMISTRY
New algorithm fuses quality and quantity in satellite imagery

NASA Soil Moisture Data Advances Global Crop Forecasts

The case of the relativistic particles solved with NASA missions

Researchers Use Satellite Imagery to Map Economic Inequality Among Indians

STELLAR CHEMISTRY
AI-based method could speed development of specialized nanoparticles

Researchers use magnets to move tiny DNA-based nano-devices

Atomically thin nanowires convert heat to electricity more efficiently

Change the face of nanoparticles and you'll rule chemistry









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.