GPS News  
ENERGY TECH
Energy harvesting goes organic, gets more flexible
by Staff Writers
Washington DC (SPX) Sep 16, 2020

A group of researchers has explored peptide-based nanotubes and, in the Journal of Applied Physics, reports using a combination of ultraviolet and ozone exposure to generate a wettability difference and an applied field to create horizontally aligned polarization of nanotubes on flexible substrates with interlocking electrodes. The work will enable the use of organic materials more widely. This image shows optical (a-c) and lateral piezoresponse force microscopy (LPFM) phase images (d-f) of the peptide nanotubes on interlocking electrode substrates: (a, d) without alignment, (b, e) aligned using both electric field and UV/ozone, and (c, f) aligned PNTs with graphene oxide (GO) using both electric field and UV/ozone.

Nanogenerators capable of converting mechanical energy into electricity are typically made from metal oxides and lead-based perovskites. But these inorganic materials aren't biocompatible, so the race is on to create natural biocompatible piezoelectric materials for energy harvesting, electronic sensing, and stimulating nerves and muscles.

University College Dublin and University of Texas at Dallas researchers decided to explore peptide-based nanotubes, because they would be an appealing option for use within electronic devices and for energy harvesting applications.

In the Journal of Applied Physics, from AIP Publishing, the group reports using a combination of ultraviolet and ozone exposure to generate a wettability difference and an applied field to create horizontally aligned polarization of nanotubes on flexible substrates with interlocking electrodes.

"The piezoelectric properties of peptide-based materials make them particularly attractive for energy harvesting, because pressing or bending them generates an electric charge," said Sawsan Almohammed, lead author and a postdoctoral researcher at University College Dublin.

There's also an increased demand for organic materials to replace inorganic materials, which tend to be toxic and difficult to make.

"Peptide-based materials are organic, easy to make, and have strong chemical and physical stability," she said.

In the group's approach, the physical alignment of nanotubes is achieved by patterning a wettability difference onto the surface of a flexible substrate. This creates a chemical force that pushes the peptide nanotube solution from the hydrophobic region, which repels water, with a high contact angle to the hydrophilic region, which attracts water, with a low contact angle.

Not only did the researchers improve the alignment of the tubes, which is essential for energy harvesting applications, but they also improved the conductivity of the tubes by making composite structures with graphene oxide.

"It's well known that when two materials with different work functions come into contact with each other, an electric charge flows from low to high work function," Almohammed said. "The main novelty of our work is that controlling the horizontal alignment of the nanotubes by electrical field and wettability-assisted self-assembly improved both the current and voltage output, and further enhancement was achieved by incorporating graphene oxide."

The group's work will enable the use of organic materials, especially peptide-based ones, more widely within electronic devices, sensors, and energy harvesting applications, because two key limitations of peptide nanotubes - alignment and conductivity - have been improved.

"We're also exploring how charge transfer processes from bending and electric field applications can enhance Raman spectroscopy-based detection of molecules," Almohammed said. "We hope these two efforts can be combined to create a self-energized biosensor with a wide range of applications, including biological and environmental monitoring, high-contrast imaging, and high-efficiency light-emitting diodes."

Research Report: "Energy harvesting with peptide nanotube-graphene oxide flexible substrates prepared with electric field and wettability assisted self-assembly"


Related Links
American Institute Of Physics
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Boundaries no barrier for thermoelectricity
Houston TX (SPX) Sep 09, 2020
Though the Summer Olympics were postponed, there's at least one place to see agile hurdlers go for the gold. You just need a way to view these electron games. Using a novel optical detection system, researchers at Rice University found that electricity generated by temperature differences doesn't appear to be affected measurably by grain boundaries placed in its way in nanoscale gold wires, while strain and other defects in the material can change this "thermoelectric" response. The phenomen ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
China halts imports of German pork after swine fever case

Beyond Meat makes China push with factories near Shanghai

Generation Z isn't all that into lab-grown meat, according to new study

Syrian olive trees put down roots in Kurdish Iraq

ENERGY TECH
SoftBank Group selling Arm to NVIDIA for up to $40 billion

DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

New technology lets quantum bits hold information for 10,000 times longer than previous record

Pentagon: It's time to bring microelectronics manufacturing to the U.S.

ENERGY TECH
China airshow 'will be held' in November, say backtracking organisers

How the US Air Force is making it easier for aircraft maintainers to see at night

AFRICOM begins B-52 training missions in North Africa

University of South Carolina redefining aircraft production process

ENERGY TECH
Is zero-emission truck maker Nikola the new Tesla, or just hot air?

Uber says will be 'zero emissions' by 2040

General Motors to take stake in Nikola electric truck company

Demand for new cars falls in Germany as virus cases rebound

ENERGY TECH
EU-China video call to replace mega summit

Asian markets rise after Wall St rebound but momentum wanes

Amazon says will hire 100,000 new people across US, Canada

EU pushes for tough curbs on cryptocurrencies

ENERGY TECH
CO2 makes trees live fast and die young: study

Brazil funding flip-flop triggers alarm; Protesters end roadblock

Toronto seeks to save oak tree older than Canada

Brazil military plane flew illegal Amazon miners: prosecutors

ENERGY TECH
China launches new optical remote-sensing satellite

Machine-learning nanosatellites to monitor global trade

Momentus awarded NASA TROPICS Pathfinder mission

ESA launches small Belgian satellite carrying VTT's remote sensing technology into space

ENERGY TECH
Nano particles for healthy tissue

Hybrid nanomaterials hold promise for improved ceramic composites

Scientists open new window into the nanoworld









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.