|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Washington DC (SPX) Nov 25, 2014
A collaboration between NEC Electronics Samsung and several academic centres in China and Iran, is investigating how software-defined cellular networking might be used to give smart phone users the next generation of super-superfast broadband, 5G. They provide details in the International Journal of Communication Networks and Distributed Systems. Currently, the fourth generation of mobile phone connection technology, 4G, in as far as it has been adopted provides broadband-type connectivity for enabled devices such as smart phones, tablet computers, laptops and other gadgets through two standards: the Mobile WiMAX standard (first used in South Korea in 2007), and the first-release Long Term Evolution (LTE) standard (in Oslo, Norway and Stockholm, Sweden since 2009). Peak speeds were set in the standards at 100 megabits per second (Mbit/s) for mobile users and ten times that for static, domestic 5G users, 1 gigabit per second. 100 Mbits/s is three times faster than the earlier 3G system but users commonly do not see data transfer at such high rates, downloads are usually at best 10 Mbits/s. As yet there is no single standard for 5G although various systems are being touted based on rebuilding the cellular networks to be super-efficient and exploiting different frequencies with their capacity for greater data rates. The hope is to be able to achieve download speeds of perhaps 10 Gbits/s. Ming Lei of Samsung Research and Development Institute China, Lei Jiang of NEC Laboratories, both in Beijing are working with colleagues at the University of Electronic Science and Technology of China in Chengdu, Beijing Jiaotong University and the University of Kurdistan. They have assessed the latest developments aimed at 5G systems and have proposed their own novel end-to-end (E2E) software-defined cellular network (SDCN) architecture which they say offers flexibility, scalability, agility and efficiency. Moreover, it will be sustainable for providers as well as profitable. They are currently building a demonstration system that will allow them to utilise several promising technologies in their architecture for 5G including cloud computing, network virtualisation, network functions virtualisation and dynamic service chaining. The approach, they suggest could overcome bandwidth shortage problems, improve quality of service so avoiding delays and data loss, as well as reducing the vast number of error-prone network nodes needed for such a system. Lai, J., Jiang, L., Lei, M., Abdollahpouri, A. and Fang, W. (2015) 'Software-defined cellular networking: a practical path towards 5G', Int. J. Communication Networks and Distributed Systems, Vol. 14, No. 1, pp.89-105.
Related Links Samsung Research and Development Institute Satellite-based Internet technologies
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |