Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Elusive quasiparticles realized
by Staff Writers
Innsbruck, Austria (SPX) May 24, 2012


The potassium atom in the middle (blue) repulses the smaller lithium atoms (yellow). This creates a complex state, which can be described physically as a quasiparticle. In various ways it behaves like a new particle with modified properties. Credit: Graphics: Harald Ritsch.

Ultracold quantum gases are an ideal experimental model system to simulate physical phenomena in condensed matter. In these gases, many-body states can be realized under highly controlled conditions and interactions between particles are highly tuneable. A research group led by Wittgenstein awardee Rudolf Grimm and START awardee Florian Schreck have now realized and comprehensively analyzed repulsive polarons for the first time.

The scientists from the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences and the Institute for Experimental Physics of the University of Innsbruck are international leaders in this field of research.

Elusive partners
To realize repulsive polarons experimentally, Rudolf Grimm and his research team produce an ultracold quantum gas consisting of lithium and potassium atoms in a vacuum chamber. They control particle interaction with electromagnetic fields, and by applying radio-frequency pulses they then drive the potassium atoms into a state where they repulse the surrounding lithium atoms.

This complex state can be described physically as quasiparticle because, in various ways, it behaves like a new particle with modified properties. By analyzing the whole energy spectrum of the system, the researchers were able to demonstrate repulsive polarons.

"This way we were able to realize and analyze not only attractive but also repulsive polarons," says Prof Grimm. While attractive polarons have been studied before, the quantum physicist and his team have entered a completely new scientific field with these novel repulsive quasiparticles. Ideal observation platform

In condensed matter these quasiparticles decay very quickly, which makes it nearly impossible to study them. But also in quantum gases the repulsive properties present difficulties: "Polarons can only exist in a metastable state," explains Rudolf Grimm "and their lifetime is crucial for our ability to investigate them at all.

"We were surprised to find that our polarons showed an almost ten times increased lifetime compared to earlier experiments in similar systems. Our experimental set-up, therefore, provides an ideal platform for a detailed analysis of many-body states that rely on repulsive interactions."

As a next step the Innsbruck researchers are going to investigate whether separate domains where only lithium or only potassium atoms accumulate are created in a quantum gas consisting of repulsive particles. "This has been suggested in theoretical models but only now we will are able to investigate it experimentally."

The scientists have published their results in the journal Nature. The experiment was carried out in close cooperation with two theoretical physicists from Denmark and Spain and is financially supported by the Austrian Science Fund within the Special Research Program FoQuS.

.


Related Links
University of Innsbruck
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Timely discovery: Physics research sheds new light on quantum dynamics
Manhattan KS (SPX) May 19, 2012
Kansas State University physicists and an international team of collaborators have made a breakthrough that improves understanding of matter-light interactions. Their research allows double ionization events to be observed at the time scale of attoseconds, which are one-billionth of a billionth of a second. The physicists have also shown that these ionization events occur earlier than thou ... read more


TIME AND SPACE
Blossom end rot plummets in Purdue-developed transgenic tomato

Where bees are, there will be honey even pre-historic

Financial tool considered climate change uncertainty to select land for conservation

How plants chill out

TIME AND SPACE
New silicon memory chip developed

Return of the vacuum tube

Performance boost for microchips

Quantum computing: The light at the end of the tunnel may be a single photon

TIME AND SPACE
French leader's Brazil visit could hasten decision on jets

China criticises US vote on Taiwan fighter jet sales

Peru to upgrade fast aging air force jets

Military aviation: a new bomber and the fifth generation fighter planes

TIME AND SPACE
Toyota overtakes GM, regains number one spot

Calif. passes 'self-driving' cars bill

Tesla to launch electric sedan in US on June 22

Tilting Cars On The Assembly Line: A New Angle On Protecting Autoworkers

TIME AND SPACE
Rio Tinto chief dismisses China 'doom'

Asian casinos fight world's best cheats: experts

Rebels threaten TVI mines in Philippines

Jeweller Graff launches Hong Kong IPO roadshow

TIME AND SPACE
Cambodian forest campaigners fight rampant logging

Brazil fights illegal logging to protect Amazon natives

UF study finds logging of tropical forests needn't devastate environment

Brazil's threatened Awa tribe outnumbered, group says

TIME AND SPACE
City's population is counted from space

Unparalleled Views of Earth's Coast With HREP-HICO

Moscow court upholds ban against satellite image distributor

New Carbon-Counting Instrument Leaves the Nest

TIME AND SPACE
Sensing the infrared: Researchers improve IR detectors with single-walled carbon nanotubes

Quantum dots appear safe in pioneering study on primates

New technique uses electrons to map nanoparticle atomic structures

Light touch keeps a grip on delicate nanoparticles




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement