Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Elementary Physics in a Single Molecule
by Staff Writers
Karlsruhe, Germany (SPX) Jul 29, 2013


The molecule of about 2 nm in size is kept stable between two metal electrodes for several days. (Figure: Christian Grupe/KIT).

A team of physicists has succeeded in performing an extraordinary experiment: They demonstrated how magnetism that generally manifests itself by a force between two magnetized objects acts within a single molecule.

This discovery is of high significance to fundamental research and provides scientists with a new tool to better understand magnetism as an elementary phenomenon of physics. The researchers published their results in the latest issue of Nature Nanotechnology (doi: 10.1038/nnano.2013.133).

The smallest unit of a magnet is the magnetic moment of a single atom or ion. If two of these magnetic moments are coupled, two options result: Either the magnetic moments add up to a stronger moment or they compensate each other and magnetism disappears. From the quantum physics point of view, this is referred to as a triplet or singlet.

A team of researchers around Professor Mario Ruben from Karlsruhe Institute of Technology and Professor Heiko B. Weber from the Friedrich-Alexander-Universitat Erlangen-Nurnberg now wanted to find out whether the magnetism of a pair of magnetic moments can be measured electrically in a single molecule.

For this purpose, the team headed by Mario Ruben used a customized molecule of two cobalt ions for the experiment. At Erlangen, Heiko B. Weber and his team studied the molecule in a so-called single-molecule junction.

This means that two metal electrodes are arranged very closely to each other, such that the molecule of about 2 nm in length is kept stable between these electrodes for many days, while current through the junction can be measured. This experimental setup was then exposed to various, down to very deep, temperatures.

The scientists found that magnetism can be measured in this way. The magnetic state in the molecule became visible as Kondo anomaly. This is an effect that makes electric resistance shrink towards deep temperatures. It occurs only when magnetism is active and, hence, may be used as evidence.

At the same time, the researchers succeeded in switching this Kondo effect on and off via the applied voltage. A precise theoretical analysis by the group of Assistant Professor Karin Fink from Karlsruhe Institute of Technology determines the various complex quantum states of the cobalt ion pair in more detail. Hence, the researchers succeeded in reproducing elementary physics in a single molecule.

Switching of a coupled spin pair in a single-molecule junction, Stefan Wagner et al., Nature Nanotechnology (2013), doi: 10.1038/nnano.2013.133.

.


Related Links
KIT - University of the State of Baden-Wuerttemberg
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Making big 'Schroedinger cats'
Calgary, Canada (SPX) Jul 29, 2013
Since Erwin Schroedinger's famous 1935 cat thought experiment, physicists around the globe have tried to create large scale systems to test how the rules of quantum mechanics apply to everyday objects. Researchers at the University of Calgary recently made a significant step forward in this direction by creating a large system that is in two substantially different states at the same time. ... read more


TIME AND SPACE
Research team collaborate to save the bacon

France promises Malaysia no palm oil 'discrimination'

Common agricultural chemicals shown to impair honey bees' health

Full genome map of oil palm indicates a way to raise yields and protect rainforest

TIME AND SPACE
Broadband photodetector for polarized light

Intel profits slide as chipmaker repositions

NIST shows how to make a compact frequency comb in minutes

New analytical methodology can guide electrode optimization

TIME AND SPACE
S. Korea extends bidding for fighter jets

France confident about delayed Rafale sale to India

US suspends delivery of F-16s to Egypt: Pentagon

Choosing a wave could accelerate airplane maintenance

TIME AND SPACE
BMW takes 'great leap forward' into electric car market

Hydrogen cars quickened by Copenhagen chemists

Toyota, Ford end hybrid partnership

LADWP Officials Announce Expanded Electric Vehicle Program

TIME AND SPACE
Asia A-listers take their seat on fashion front row

Myanmar revises controversial Chinese-backed mine deal

End of China boom a challenge, not a crisis: Australia

Anger over Spanish corruptioin spills into streets

TIME AND SPACE
Computer can infer rules of the forest

Boreal Forests in Alaska Becoming More Flammable

Oil palm genome boosts hopes for tropical forests

Loss of African woodland may impact on climate

TIME AND SPACE
NASA's Van Allen Probes Discover Particle Accelerator in the Heart of Earth's Radiation Belts

Seeing Photosynthesis from Space: NASA Scientists Use Satellites to Measure Plant Health

First high-resolution national carbon map - Panama

NASA Releases Images of Earth Taken by Distant Spacecraft

TIME AND SPACE
New NIST nanoscale indenter takes novel approach to measuring surface properties

Desktop printing at the nano level

New nanoscale imaging method finds application in plasmonics

York Nanocentre researchers image individual atoms in a living catalytic reaction




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement