Subscribe free to our newsletters via your
. GPS News .




ENERGY TECH
Electronics advance moves closer to a world beyond silicon
by Staff Writers
Corvallis OR (SPX) Sep 09, 2013


This MIIM diode has a layer of metals at each side and two insulators in between, an important advance in this new form of high speed electronics that is not limited by the use of silicon. (Image courtesy of Oregon State University).

Researchers in the College of Engineering at Oregon State University have made a significant advance in the function of metal-insulator-metal, or MIM diodes, a technology premised on the assumption that the speed of electrons moving through silicon is simply too slow.

For the extraordinary speed envisioned in some future electronics applications, these innovative diodes solve problems that would not be possible with silicon-based materials as a limiting factor.

The new diodes consist of a "sandwich" of two metals, with two insulators in between, to form "MIIM" devices. This allows an electron not so much to move through materials as to tunnel through insulators and appear almost instantaneously on the other side. It's a fundamentally different approach to electronics.

The newest findings, published in Applied Physics Letters, have shown that the addition of a second insulator can enable "step tunneling," a situation in which an electron may tunnel through only one of the insulators instead of both. This in turn allows precise control of diode asymmetry, non-linearity, and rectification at lower voltages.

"This approach enables us to enhance device operation by creating an additional asymmetry in the tunnel barrier," said John F. Conley, Jr., a professor in the OSU School of Electrical Engineering and Computer Science. "It gives us another way to engineer quantum mechanical tunneling and moves us closer to the real applications that should be possible with this technology."

OSU scientists and engineers, who only three years ago announced the creation of the first successful, high-performance MIM diode, are international leaders in this developing field. Conventional electronics based on silicon materials are fast and inexpensive, but are reaching the top speeds possible using those materials. Alternatives are being sought.

More sophisticated microelectronic products could be possible with the MIIM diodes - not only improved liquid crystal displays, cell phones and TVs, but such things as extremely high-speed computers that don't depend on transistors, or "energy harvesting" of infrared solar energy, a way to produce energy from the Earth as it cools during the night.

MIIM diodes could be produced on a huge scale at low cost, from inexpensive and environmentally benign materials. New companies, industries and high-tech jobs may ultimately emerge from advances in this field, OSU researchers say.

The work by Conley and OSU doctoral student Nasir Alimardani has been supported by the National Science Foundation, the U.S. Army Research Laboratory and the Oregon Nanoscience and Microtechnologies Institute.

.


Related Links
Oregon State University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Wiring microbes to conduct and produce electricity faster
Galway, Ireland (SPX) Sep 09, 2013
A team of researchers in Ireland have found evidence that altering the chemistry of an electrode surface (surface engineering) can help microbial communities to connect to the electrode to produce more electricity (electron-exchange) more rapidly compared to unmodified electrodes. Electron exchange is at the heart of all redox reactions occurring in the natural world, as well as in bioengineered ... read more


ENERGY TECH
A genetic treasure hunting in sorghum may benefit crop improvement

Report proposes microbiology's grand challenge to help feed the world

Spread of crop pests threatens global food security as Earth warms

Study forecasts future water levels of crucial agricultural aquifer

ENERGY TECH
Novel topological crystalline insulator shows mass appeal

How brain microcircuits integrate information from different senses

Scientists Find Asymmetry in Topological Insulators

Speed limit set for ultrafast electrical switch

ENERGY TECH
BAE considers military refueling conversion for commercial jet

Air Canada transfers executive jet fleet to partner

Bell Boeing V-22 Osprey Deploys Refueling Equipment in Flight Test

Aerospace firms expand supply, services networks in Poland

ENERGY TECH
Hong Kong launches electric bus in drive against pollution

BMW accused of spying on Paris electric car scheme

China auto sales perk up in August: group

Privacy fears stoked by license plate readers

ENERGY TECH
Romania PM backs down on controversial gold mine project

Israeli tycoon center of probe in $2.5B Guinea mining deal

Thousands protest Romania gold mine plans

China among world's top three investors in 2012: government

ENERGY TECH
New technique for measuring tree growth cuts down on research time

Northeastern US forests transformed by human activity over 400 years

Red cedar tree study shows that Clean Air Act is reducing pollution, improving forests

Argentina protests Uruguay pulp mill expansion

ENERGY TECH
Our living planet Earth's carbon dioxide breathing seen from space

NASA's Landsat Revisits Old Flames in Fire Trends

NASA Data Reveals Mega-Canyon under Greenland Ice Sheet

Map carved onto surface of ostrich egg may be oldest showing New World

ENERGY TECH
Size Matters as Nanocrystals Go Through Phases

New breakthrough for structural characterization of metal nanoparticles

Toxic nanoparticles might be entering human food supply

Plasma-treated nano filters help purify world water supply




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement