Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Electron Microscopes With a Twist
by Staff Writers
Vienna, Austria (SPX) Nov 07, 2012


The electron beam passes through a screen and is transformed into a vortex beam.

Nowadays, electron microscopes are an essential tool, especially in the field of materials science. At TU Vienna, electron beams are being created that possess an inner rotation, similarly to a tornado. These "vortex beams" cannot only be used to display objects, but to investigate material-specific properties - with precision on a nanometer scale. A new breakthrough in research now allows scientists to produce much more intense vortex beams than ever before.

In a tornado, the individual air particles do not necessarily rotate on their own axis, but the air suction overall creates a powerful rotation. The rotating electron beams that have been generated at TU Vienna behave in a very similar manner.

Quantum Tornado: the Electron as a Wave
In order to understand them, we should not think of electrons simply as minuscule points or pellets, as in that case they could at most rotate on their own axis. Vortex beams, on the other hand, can only be explained in terms of quantum physics: the electrons behave like a wave, and this quantum wave can rotate like a tornado or a water current behind a ship's propeller.

"After the vortex beam gains angular momentum, it can also transfer this angular momentum to the object that it encounters", explained Prof. Peter Schattschneider from the Institute of Solid State Physics at TU Vienna.

The angular momentum of the electrons in a solid object is closely linked to its magnetic properties. For materials science it is therefore a huge advantage to be able to make statements regarding angular momentum conditions based on these new electron beams.

Beams Rotate - With Masks and Screens
Peter Schattschneider and Michael Stoger-Pollach (USTEM, TU Vienna) have been working together with a research group from Antwerp on creating the most intense, clean and controllable vortex beams possible in a transmission electron microscope.

The first successes were achieved two years ago: at the time, the electron beam was shot through a minuscule grid mask, whereby it split into three partial beams: one turning right, one turning left and one beam that did not rotate.

Now, a new, much more powerful method has been developed: researchers use a screen, half of which is covered by a layer of silicon nitride. This layer is so thin that the electrons can penetrate it with hardly any absorption, however they can be suitably phase-shifted. "After focusing using a specially adapted astigmatic lens, an individual vortex beam is obtained", explained Michael Stoger-Pollach.

This beam is more intense by one order of magnitude than the vortex beams that we have been able to create to date.

"Firstly, we do not split the beam into three parts, as is the case with a grid mask, but rather, the entire electron stream is set into rotation. Secondly, the grid mask had the disadvantage of blocking half of the electrons - the new special screen does not do this", said Stoger-Pollach.

Thanks to the new technology, right and left-rotating beams can now be distinguished in a reliable manner - previously this was only possible with difficulty. If we now add a predetermined angular momentum to each right and left-rotating beam, the rotation of one beam is increased, while the rotation of the other beam decreases.

Electron microscopes with a twist
This new technology was briefly presented by the research team in the "Physical Review Letters" journal. In future, the aim is to apply the method in materials science.

Magnetic properties are often the focus of attention, particularly in the case of newly developed designer materials. "A transmission electron microscope with vortex beams would allow us to investigate these properties with nanometric precision", explained Peter Schattschneider.

More exotic applications of vortex beams are also conceivable: in principle, it is possible to set all kinds of objects in rotation - even individual molecules - using these beams, which possess angular momentum. Vortex beams could therefore also open new doors in nanotechnology.

.


Related Links
Vienna University of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
World record for the entanglement of twisted light quanta
Vienna, Austria (SPX) Nov 05, 2012
To this end, the researchers developed a new method for entangling single photons which gyrate in opposite directions. This result is a first step towards entangling and twisting even macroscopic, spatially separated objects in two different directions. The researchers at the Vienna Center for Quantum Science and Technology (VCQ), situated at the University of Vienna, and the Institute for ... read more


TIME AND SPACE
Greenpeace stages anti-GM 'toxic warning' protest

Smallholder farmers need improved stake in Nile's development

Making barley less thirsty

Ozone's impact on soybean yield: Reducing future losses

TIME AND SPACE
Quantum kisses change the color of nothing

Ultrasensitive photon hunter

Northrop Grumman Begins Sampling New Gallium Nitride MMIC Product Line

Japan's electronics sector in race against time

TIME AND SPACE
Hundreds of flights canceled in New York storm

Australia's Chief of Air Force Visits Northrop Grumman's F-35 Production Facility in Palmdale

Boeing Delivers Fifth Production P-8A Poseidon Aircraft to US Navy

Boeing's Indian deal may take six months: officials

TIME AND SPACE
Green cars ready to race in 2nd Atacama solar challenge

China auto firms in 'strategic alliance' to compete

Glow-in-the-dark roads will guide drivers

Japan auto giants warn on China dispute, strong yen

TIME AND SPACE
Latin America looks to more engaged Obama

Park aims to widen Korean economic ties

Non-EU Swiss grapple with immigration rise

India's Wipro profits up 24%, beats forecast

TIME AND SPACE
Mountain meadows dwindling in the Pacific Northwest

New three-fingered frog discovered in southern Brazil

Action needed to prevent more devastating tree diseases entering the UK

Inspiration from Mother Nature leads to improved wood

TIME AND SPACE
NASA's SPoRT Team Tracks Hurricane Sandy

Sizing up biomass from space

NASA Radar Penetrates Thick, Thin of Gulf Oil Spill

Satellite images tell tales of changing biodiversity

TIME AND SPACE
Low-resistance connections facilitate multi-walled carbon nanotubes for interconnects

New discovery shows promise in future speed of synthesizing high-demand nanomaterials

Graphene Mini-Lab

Strengthening fragile forests of carbon nanotubes for new MEMS applications




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement