Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
Electric charge disorder: A key to biological order?
by Staff Writers
Heidelberg, Germany (SPX) May 01, 2012


To measure the strength of the twist that acts on a randomly charged surface, the authors used a sphere which was mounted like a spinning top next to a randomly charged flat substrate.

Theoretical physicist Ali Naji from the IPM in Tehran and the University of Cambridge, UK, and his colleagues have shown how small random patches of disordered, frozen electric charges can make a difference when they are scattered on surfaces that are overall neutral.

These charges induce a twisting force that is strong enough to be felt as far as nanometers or even micrometers away.

These results, about to be published in EPJ E, could help to understand phenomena that occurr on surfaces such as those of large biological molecules.

To measure the strength of the twist that acts on a randomly charged surface, the authors used a sphere which was mounted like a spinning top next to a randomly charged flat substrate.

Because small amounts of positive and negative charges were spread in a disordered mosaic throughout both surfaces, they induced transient attractive or repulsive twisting forces.

This was regardless of the surfaces' overall electrical neutrality, thus making the sphere spin. Using statistical averaging methods, the authors studied the fluctuations of these forces.

The authors found that the twisting force, created by virtue of the disorder of surface charges, is expected to be much stronger and far-reaching than the remnant forces.

The latter are always present, even in the absence of charge disorder, and are due to fluctuations at the atomic and molecular levels.

This could have implications for large randomly charged surfaces such as biological macromolecules, which may be exposed to strong electrostatic forces, inducing attraction and/or repulsion, even if they carry no overall net charge.

For instance, this phenomenon could partly explain biological pattern recognition, such as lock and key phenomena. In that context, the twisting force could explain the attraction between biological macromolecules that lead to pre-alignment prior to their interaction.

Naji A., Sarabadani J., Dean D.S., and Podgornik R. (2012), Sample-to-sample torque fluctuations in a system of coaxial randomly charged surfaces, European Physical Journal E (EPJ E). DOI 10.1140/epje/i2012-12024-y

.


Related Links
University of Cambridge
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
X-rays reveal molecular arrangements for better printable electronics
Santa Barbara CA (SPX) Apr 26, 2012
By employing powerful X-rays that can see down to the molecular level of organic materials used in printable electronics, researchers are now able to determine why some materials perform better than others. Their findings, published in the journal Nature Materials, could lead to cheaper, more efficient printable electronic devices. "This work is exciting because it helps reveal in new deta ... read more


CHIP TECH
New study sheds light on debate over organic vs. conventional

New Zealand gas research to help farmers' bottom line

Pesticide exposure linked to brain changes: study

New Yorkers bring fish farms to urban jungle

CHIP TECH
Electric charge disorder: A key to biological order?

With new design, bulk semiconductor proves it can take the heat

Electron politics: Physicists probe organization at the quantum level

X-rays reveal molecular arrangements for better printable electronics

CHIP TECH
China Eastern to buy 20 Boeing 777-300s

JAL could go public again in July 2012: report

All Nippon Airways boosts profit, sales forecast

Slovenian adventurer ends eco-friendly trip around the world

CHIP TECH
Ford, GM sales skid as Chrysler, Toyota accelerate

Chinese tastes impact global car designs

Foreign carmakers 'pressed' to launch China brands

Vibrating Steering Wheel Guides Drivers While Keeping Their Eyes on the Road

CHIP TECH
China vows to boost imports ahead of US talks

Disgraced China boss's son drove Porsche: report

Peru in final talks for huge gold mine

US urges financial reform in China ahead of talks

CHIP TECH
Bolivian natives begin new march in road protest

Do urban 'heat islands' hint at trees of future?

Palms reveal the significance of climate change for tropical biodiversity

Rousseff pressed to veto Brazil forestry law

CHIP TECH
NASA Image Gallery Highlights Earth's Changing Face

Risat-1 satellite raised to its final intended orbit

Risat-1 catapults India into a select group of nations

NASA's Landsat Satellites See Texas Crop Circles

CHIP TECH
Creating nano-structures from the bottom up

Notre Dame paper examines nanotechnology-related safety and ethics problem

First Atomic-Scale Real-Time Movies of Platinum Nanocrystal Growth in Liquids

Nanodot-based memory sets new world speed record




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement