GPS News  
WHALES AHOY
Eavesdropping on whales in the high Arctic
by Staff Writers
Trondheim, Norway (SPX) Jul 06, 2022

stock image only

Whales are huge, but they live in an even larger environment - the world's oceans. Researchers use a range of tools to study their whereabouts, including satellite tracking, aerial surveys, sightings and deploying individual hydrophones to listen for their calls.But now, for the first time ever, researchers have succeeded in passively listening to whales - essentially, eavesdropping on them - using existing underwater fibre optic cables.

The technique, called Distributed Acoustic Sensing, or DAS, uses an instrument called an interrogator to tap into a fibre optic system, turning unused, extra fibres in the cable into a long virtual array of hydrophones. The research was conducted in the Svalbard archipelago, in an area called Isfjorden, where baleen whales, such as blue whales, are known to forage during the summer.

"I think this can change the field of marine bioacoustics," said Lea Bouffaut, the first author of a paper just published in Frontiers in Marine Sciences. Bouffaut was a postdoc at NTNU, the Norwegian University of Science and Technology, when she worked on this research and is now at the K. Lisa Yang Center for Conservation Bioacoustics at Cornell University, where she continues expanding this work.

Fibre optic cables are everywhere
Bouffaut said the beauty of the system is that it could allow researchers to take advantage of an existing, worldwide network.

"Deploying hydrophones is extremely expensive. But fibre optic cables are all around the world, and are accessible," she said. "This could be much like how satellite imagery coverage of the Earth has allowed scientists from many different fields to do many different types of studies of the Earth. To me, this system could become like satellites in the ocean."

Bouffaut said that other types of whale monitoring that rely on sound often only provide single or a few points of location information from a hydrophone. Point locations provide limited coverage of an area, and of course aren't evenly spread across all oceans, which can make it challenging for researchers to study migratory routes, for example.

In contrast, DAS not only allows researchers to detect whale vocalizations, they can use the fibre network to locate where the whales are in both space and time, with an unprecedented spatial resolution, she said.

"With this system, which is what we can basically call a hydrophone array, we have the chance to cover a much bigger area for monitoring. And because we receive the sound at multiple angles, we can even say where the animal was - the position of the animal. And that's a huge advantage. And if we take it even further, which still requires some extra work, this could happen in real time, which would really be a game changer for acoustic monitoring of whales," said her colleague Hannah Joy Kriesell, one of the paper's co-authors.

Can hear boats, earthquakes
The technology also allows researchers to "hear" other sounds carried through the water, from large tropical storms to earthquakes to ships passing by, said Martin Landro, an NTNU geophysicist who was a co-author of the paper. Landro is also head of the Centre for Geophysical Forecasting, a Centre for Research-based Innovation funded by the Research Council of Norway.

We detected at least four or five different large storms that occurred and we could go back to the meteorological data and identify them by name.

"If anything is moving close to or making an acoustic noise close to that fibre, which is buried in the seabed, we can measure that," he said. "So what we saw was a lot of ship traffic, of course, a lot of earthquakes, and we could also detect distant storms. And last but not least, whales. We detected at least 830 whale vocalizations altogether."Landro said that detecting distant storms was possible because of the low frequency seismic signals that are generated by the waves from big storms. This method of detecting large storms from low-frequency waves at great distances was established by the oceanographer Walter Munk in 1963, when he measured waves from Antarctic storms on the Pacific Island of Samoa, Landro said.

"We were able to see storms that occurred in the South Atlantic 13,000 kilometres away on the low frequency part of the data, and we could determine the distance to the storm," he said. "We detected at least four or five different large storms that occurred and we could go back to the meteorological data and identify them by name."

COVID-19 and a trip to Svalbard
The researchers worked with Sikt, the Norwegian Agency for Shared Services in Education and Research, which provided access to 250 km of fibre optic cable in Svalbard, buried on the seabed between the archipelago's main town, Longyearbyen, and Ny-Alesund, a research settlement on a peninsula to the northwest. The cable goes from a sheltered fjord, called Isfjorden, and out into the open ocean, where 120 km of the cable was used as a hydrophonic array.

The research group also included Alcatel Submarine Networks Norway, which provided the interrogators - the instruments that allowed the group to tap into the Sikt fibre optic cable.

Two researchers travelled to Longyearbyen in June 2020, at the beginning of the COVID-19 pandemic, and were able to use the interrogator for 40 days, listening along the length of the 120 km long cable.

"The fibre cable between Longyearbyen and Ny-Alesund, which was put in production in 2015 after 5 years of planning and prework and mainly funded by our ministry, was intended to serve the research community and the geodetic station in Ny Alesund with high and resilient communication capacity," said Olaf Schjelderup, head of Sikt's national R&E network and another paper co-author. "The DAS sensing and whale observation experiment shows a completely new use of this kind of fibre optic infrastructure, resulting in excellent, unique science."

Schjelderup noted that another advantage of the experiment was the high-capacity data communication capacity provided by the Norwegian R&E Network, (namedmUninett), which allowed near real-time streaming of the raw data from the DAS sensing unit in Longyearbyen all the way to Trondheim.

"The researchers could, from Trondheim, almost instantly, start studying the signal recordings from the sea outside Svalbard. This is a very good example of a paradigm shift in distributed data collection," he said. "What has been done at Svalbard here paves the way for rolling out more of these kinds of fibre optic sensors as permanent infrastructure - collecting and processing data from different geographies and locations in near real time - both for research and different operational purposes."

7 terabytes per day
Bouffaut and Kriesell, a researcher at NTNU's Department of Electronic Systems, worked on analysing the 40 days of round-the-clock data from the experiment. In total they had to analyse 7 terabytes per day, or roughly 250 terabytes of data for the entire period. They started by looking at signals from locations on the fibre that were 10 km apart, which "made it manageable," Bouffaut said.

The challenge, in addition to the amount of data involved, was that "we're looking for signals without knowing exactly what to expect. This is new technology and a new type of data that no one has looked at for finding whales," Bouffaut said.

The work was painstaking, but "it was very, super exciting, especially when we started seeing whale signals," Bouffaut said. "But I get this question a lot, even from bioacousticians: how do you know this is a whale? And I say, 'how do you know it's a whale when you've recorded from a hydrophone? We recognized the frequency, the pattern, the repetition, and we listened to it.'"

Bouffaut added that now that the researchers know the data better, they could train machine learning models to simplify and automatize the data analysis process.

Bouffaut and Kriesell identified what are called stereotyped calls for North Atlantic blue whales outside of Isfjorden. These kinds of calls are associated with male vocalizations. They also saw what are called D-calls, which are vocalizations in which the sound sweeps down, and can be made by males, females and calves. They detected these calls inside the sheltered waters of the fjord. Previous researchers have linked D-calls with foraging or social contexts, the researchers said.

The changing Arctic
Bouffaut said the value of this kind of system was especially clear in the Arctic, where warming from climate change is happening two to three times more quickly than average.

"The Arctic is changing very fast. And both animal and human use of the area is changing as fast as the ice melts," Bouffaut said.

Whales such as blue whales aren't year-round users of the region yet, but as the ice melts, this could change, she noted.

At the same time, the disappearing ice cover opens the Arctic to increased shipping, fishing and other activities, such as tourism.

"So if whales are changing their uses of this area, and maybe using this area for more than for foraging or for activities where they're very vulnerable, then having this type of technology can help us monitor these changes," Bouffaut said.

It is possible to see whales when they come to the surface to breathe, but sound is acknowledged as the best way to study whales because they're otherwise very elusive"So by studying their sound production, their calls and their vocalizations, we can learn a lot about them. We can learn where they are during different seasons, and how and where they migrate to. So we get a lot of information by eavesdropping on them," Kriesell said.

And if DAS can be set up so that the information can be analysed in real time, the information could be relayed to ships travelling in waters where whales are feeding or socializing, and inform stakeholders for direct conservation action, Bouffaut said.

"We could potentially reduce the risk of ship strikes with whales. That would be a very big deal," Kriesell added. "Arctic ice is melting, and ship traffic has drastically increased in the Arctic. And that's a problem for the animals. So if we have a means to inform ships about the location of whales in real time, we could stop or at least reduce the risk for ship strikes."

Research Report:Eavesdropping at the speed of light: distributed acoustic sensing of baleen whales in the Arctic


Related Links
Centre for Geophysical Forecasting
Follow the Whaling Debate


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WHALES AHOY
Killer whale stranded in France's River Seine dies
Rennes, France (AFP) May 30, 2022
A killer whale stranded for weeks in France's River Seine was found dead Monday after attempts to guide it back to sea failed and revealed it was severely sick, local authorities said. Regional officials had already decided to euthanise the killer whale - also known as an orca - to end its suffering, but a sailor spotted the animal lying on its side Monday morning. Sea Shepherd France, who went out to the animal and confirmed its death, said on Twitter they were watching over the orca's body ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WHALES AHOY
Amazon, Just Eat deal to offer free Grubhub delivery in US

Ploughing and tilling soil on slopes is jeopardizing future farm yields

Russia occupies 22% of Ukraine farmland: NASA

AIR and Nigerian Space Agency sign MOU to collaborate on agriculture monitoring

WHALES AHOY
Giant Rashba semiconductors show unconventional dynamics

Physicists work to shrink microchips with first one-dimensional helium model system

Electrospinning promises major improvements in wearable technology

Nanostructured surfaces for future quantum computer chips

WHALES AHOY
Hong Kong suspends 'not effective' Covid flight ban

The hawk has landed: Braking mid-air to prioritize safety over energy or speed

Virgin Galactic picks Boeing subsidiary to build two motherships

Chinese airlines buy 292 planes from Airbus for total of $37 bn

WHALES AHOY
New traffic device leaves Hong Kong pedestrians red in the face

Tesla deliveries fall with temporary closure of China factory

Range extenders: solar panels provide more juice to EVs

EU approves end of combustion engine sales by 2035

WHALES AHOY
Asian stocks up as recession fears ease, yen rises after Abe shooting

Stocks enjoy bounce, sterling and FTSE up as Johnson to resign

Australia seeks end to trade rows in China meeting

Urban warming could cause major damage to global economy, study says

WHALES AHOY
Niger activists call for wood-free Eid barbecues to save trees

The Gambia bans timber exports after smuggling fears

Brazil sets new six-month Amazon deforestation record

Indigenous farewell for expert killed in Amazon

WHALES AHOY
Discovery reveals large, year-round ozone hole over tropics

Earth from Space: Patagonia

Synspective releases First Image from its Small SAR Satellite "StriX-ss" that captures 3 cities around the world

Physics professor selected for NASA mission

WHALES AHOY
A mirror tracks a tiny particle

New silicon nanowires can really take the heat

Cooling speeds up electrons in bacterial nanowires

Seeing more deeply into nanomaterials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.