GPS News  
OIL AND GAS
Easy aluminum nanoparticles for rapid, efficient hydrogen generation from water
by Staff Writers
Santa Cruz CA (SPX) Feb 21, 2022

Scanning electron microscopy of the aluminum-gallium composite shows aluminum nanoparticles in a matrix of gallium.

Aluminum is a highly reactive metal that can strip oxygen from water molecules to generate hydrogen gas. Its widespread use in products that get wet poses no danger because aluminum instantly reacts with air to acquire a coating of aluminum oxide, which blocks further reactions.

For years, researchers have tried to find efficient and cost-effective ways to use aluminum's reactivity to generate clean hydrogen fuel. A new study by researchers at UC Santa Cruz shows that an easily produced composite of gallium and aluminum creates aluminum nanoparticles that react rapidly with water at room temperature to yield large amounts of hydrogen. The gallium was easily recovered for reuse after the reaction, which yields 90% of the hydrogen that could theoretically be produced from reaction of all the aluminum in the composite.

"We don't need any energy input, and it bubbles hydrogen like crazy. I've never seen anything like it," said UCSC Chemistry Professor Scott Oliver.

Oliver and Bakthan Singaram, professor of chemistry and biochemistry, are corresponding authors of a paper on the new findings, published February 14 in Applied Nano Materials.

The reaction of aluminum and gallium with water has been known since the 1970s, and videos of it are easy to find online. It works because gallium, a liquid at just above room temperature, removes the passive aluminum oxide coating, allowing direct contact of aluminum with water. The new study, however, includes several innovations and novel findings that could lead to practical applications.

A U.S. patent application is pending on this technology. The international (PCT) filing on which it was based is linked here.

Singaram said the study grew out of a conversation he had with a student, coauthor Isai Lopez, who had seen some videos and started experimenting with aluminum-gallium hydrogen generation in his home kitchen.

"He wasn't doing it in a scientific way, so I set him up with a graduate student to do a systematic study. I thought it would make a good senior thesis for him to measure the hydrogen output from different ratios of gallium and aluminum," Singaram said.

Previous studies had mostly used aluminum-rich mixtures of aluminum and gallium, or in some cases more complex alloys. But Singaram's lab found that hydrogen production increased with a gallium-rich composite. In fact, the rate of hydrogen production was so unexpectedly high the researchers thought there must be something fundamentally different about this gallium-rich alloy.

Oliver suggested that the formation of aluminum nanoparticles could account for the increased hydrogen production, and his lab had the equipment needed for nanoscale characterization of the alloy. Using scanning electron microscopy and x-ray diffraction, the researchers showed the formation of aluminum nanoparticles in a 3:1 gallium-aluminum composite, which they found to be the optimal ratio for hydrogen production.

In this gallium-rich composite, the gallium serves both to dissolve the aluminum oxide coating and to separate the aluminum into nanoparticles. "The gallium separates the nanoparticles and keeps them from aggregating into larger particles," Singaram said. "People have struggled to make aluminum nanoparticles, and here we are producing them under normal atmospheric pressure and room temperature conditions."

Making the composite required nothing more than simple manual mixing.

"Our method uses a small amount of aluminum, which ensures it all dissolves into the majority gallium as discrete nanoparticles," Oliver said. "This generates a much larger amount of hydrogen, almost complete compared to the theoretical value based on the amount of aluminum. It also makes gallium recovery easier for reuse."

The composite can be made with readily available sources of aluminum, including used foil or cans, and the composite can be stored for long periods by covering it with cyclohexane to protect it from moisture.

Although gallium is not abundant and is relatively expensive, it can be recovered and reused multiple times without losing effectiveness, Singaram said. It remains to be seen, however, if this process can be scaled up to be practical for commercial hydrogen production.

Research Report: "Aluminum Nanoparticles from a Ga-Al Composite for Water Splitting and Hydrogen Generation"


Related Links
University of California - Santa Cruz
All About Oil and Gas News at OilGasDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


OIL AND GAS
Iraqis queue for petrol in Mosul amid shortages
Mosul, Iraq (AFP) Feb 18, 2022
Motorists in Iraq's main northern city of Mosul queued for hours on Friday to fill up their cars with petrol, with authorities blaming shortages on smuggling to the nearby Kurdistan region. For the past week, long lines have formed at petrol stations in Mosul and the rest of Nineveh province, AFP journalists reported. Soldiers were deployed in some stations to contain any violence, as tempers flared among motorists over the petrol shortage. "Our lives are made of waiting in line. It has beco ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OIL AND GAS
A life-changing fertilizer for rural farmers in Kenya

Australian wine giant shakes off China sales collapse

Brazil Chamber passes controversial pesticide bill

Monitoring crop health across the Netherlands

OIL AND GAS
Nanoantennas for light controlled electrically

Piezoelectric thin film and metasurfaces combined to create lens with tunable focus

A possible paradigm shift within piezoelectricity

Chaining atoms together yields quantum storage

OIL AND GAS
Japan recovers second body from crashed F-15

NASA's X-59 Calls on Texas for Key Testing

Quarterly AFTC-AFRL Summit aims to get warfighters "ready to go fast"

Fuyo Lease Group announces investment in Bye Aerospace

OIL AND GAS
Germany wants to keep fuel motor cars, but get rid of petrol

Lotus sports car group eyes stock market float

Paris kicks car traffic reduction plan down the road

As costs jump, Sao Paulo Uber drivers set to launch rival app

OIL AND GAS
HSBC announces $1 bn share buyback as annual profits double

EU agrees sanctions that will 'hurt' Russia

EU challenges China at WTO over patents as feud deepens

Chinese tech giant Tencent opposes US fake goods label

OIL AND GAS
DR Congo flouting forest protection deal: Greenpeace

Drones help solve tropical tree mortality mysteries

Mozambique to plant 100 million trees on battered coast

Firefighters extinguish Kenya forest blaze

OIL AND GAS
Magellan Aerospace to supply subsystems for CHORUS EO Satellite

Spire Global awarded NOAA contract to deliver satellite weather data

Earth's inner core: a mixture of solid Fe and liquid-like light elements

Spire Global completes acquisition of exactEarth

OIL AND GAS
Nanotube films open up new prospects for electronics

Using the universe's coldest material to measure the world's tiniest magnetic fields

Self-assembling and complex, nanoscale mesocrystals can be tuned for a variety of uses

Columns designed from nanographenes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.