GPS News  
CARBON WORLDS
Earthquakes as a driver for the deep-ocean carbon cycle
by Staff Writers
Zurich, Switzerland (SPX) Jan 11, 2018


Michael Strasser (right), then assistant professor at ETH Zurich, and expedition head Gerold Wefer, professor at MARUM and Bremen University, make recommendations about the core sample on board the RV Sonne. Source/Copyright: V. Diekamp, MARUM, Bremen University

In a paper recently published in Nature Communications, geologist Michael Strasser presented the initial findings of a month-long research expedition off the coast of Japan. The research initiative had been organised in March 2012 by MARUM - Center for Marine Environmental Sciences. Strasser, who until 2015 was Assistant Professor for Sediment Dynamics at ETH Zurich and is now a Full Professor for Sediment Geology at the University of Innsbruck, took an international team there to study dynamic sediment remobilisation processes triggered by seismic activity.

At a depth of 7,542 metres below sea level, the team took a core sample from the Japan Trench, an 800-km-long oceanic trench in the northwestern part of the Pacific Ocean. The trench, which is seismically active, was the epicentre of the Tohoku earthquake in 2011, which made headlines when it caused the nuclear meltdown at Fukushima.

Such earthquakes wash enormous amounts of organic matter from the shallows down into deeper waters. The resulting sediment layers can thus be used later to glean information about the history of earthquakes and the carbon cycle in the deep ocean.

New dating methods in the deep ocean
The current study provided the researchers with a breakthrough. They analysed the carbon-rich sediments using radiocarbon dating. This method - measuring the amount of organic carbon as well as radioactive carbon (14C) in mineralised compounds - has long been a means of determining the age of individual sediment layers.

Until now, however, it has not been possible to analyse samples from deeper than 5,000 metres below the surface, because the mineralised compounds dissolve under increased water pressure.

Strasser and his team therefore had to use new methods for their analysis. One of these was what is known as the online gas radiocarbon method, developed by ETH doctoral student Rui Bao and the Biogeoscience Group at ETH Zurich. This greatly increases efficiency, since it takes just a single core sample to make more than one hundred 14C age measurements directly on the organic matter contained within the sediment.

In addition, the researchers applied the Ramped PyrOx measurement method (pyrolysis) for the first time in the dating of deep-ocean sediment layers. This was done in cooperation with the Woods Hole Oceanographic Institute (U.S.), which developed the method.

The process involves burning organic matter at different temperatures. Because older organic matter contains stronger chemical bonds, it requires higher temperatures to burn. What makes this method novel is that the relative age variation of the individual temperature fractions between two samples very precisely distinguishes the age difference between sediment levels in the deep sea.

Dating earthquakes to increase forecast accuracy
Thanks to these two innovative methods, the researchers could determine the relative age of organic matter in individual sediment layers with a high degree of precision. The core sample they tested contained older organic matter in three places, as well as higher rates of carbon export to the deep ocean.

These places correspond to three historically documented yet hitherto imprecisely dated seismic events in the Japan Trench: the Tohoku earthquake in 2011, an unnamed earthquake in 1454, and the Sanriku earthquake in 869.

At the moment, Strasser is working on a large-scale geological map of the origin and frequency of sediments in deep-ocean trenches. To do so, he is analysing multiple core samples taken during a follow-up expedition to the Japan Trench in 2016.

"The identification and dating of tectonically triggered sediment deposits is also important for future forecasts about the likelihood of earthquakes," Strasser says.

"With our new methods, we can predict the recurrence of earthquakes with much more accuracy."

Research paper

CARBON WORLDS
A biological solution to carbon capture and recycling?
Dundee UK (SPX) Jan 09, 2018
Scientists at the University of Dundee have discovered that E. coli bacteria could hold the key to an efficient method of capturing and storing or recycling carbon dioxide. Cutting carbon dioxide (CO2) emissions to slow down and even reverse global warming has been posited as humankind's greatest challenge. It is a goal that is subject to considerable political and societal hurdles, but it ... read more

Related Links
ETH Zurich
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Warming to force winemakers, growers to plant different varieties

Speed breeding technique sows seeds of new green revolution

Speed breeding breakthrough to boost crop research

Sao Tome: Rainforests, chocolate and millionaires

CARBON WORLDS
Intel chief says chip flaw damage contained by industry

Tech firms battle to resolve major security flaw

New study visualizes motion of water molecules, promises new wave of electronic devices

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor

CARBON WORLDS
US firm seals deal to resume MH370 hunt: Malaysia

High-tech ship en route to resume hunt for MH370

JPATS Logistics Services to support T-6 aircraft in new contract

Bell announces first flight for V-280 tiltrotor aircraft

CARBON WORLDS
More than half of Norway's new cars electrified: data

With pricey electric car, Fisker eyes comeback

U.S. vehicle sales skew gas mileage average lower

Startup unveils 'car of future' for $45,000

CARBON WORLDS
France signs deals with China but warns against 'pillaging'

Macron begins China state visit at Silk Road gateway

Macron bets on horse diplomacy in China

Europe casts a wary eye on China's Silk Road plans

CARBON WORLDS
North Atlantic Oscillation dictates timing of tree reproduction in Europe

African deforestation not as great as feared

Cascading use is also beneficial for wood

New maps show shrinking wilderness being ignored at our peril

CARBON WORLDS
Australia swelters through one of hottest years on record

Soil freeze-thaw stimulates nitrous oxide emissions from alpine meadows

ICON and GOLD teaming up to explore Earth's interface to space

Arctic clouds highly sensitive to air pollution

CARBON WORLDS
Silver nanoparticles take spectroscopy to new dimension

Researchers find simpler way to deposit magnetic iron oxide onto gold nanorods

Discovery sets new world standard in nano generators

A 100-fold leap to GigaDalton DNA nanotech









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.