Subscribe free to our newsletters via your
. GPS News .




TECTONICS
Earthquake simulation tops one quadrillion flops
by Staff Writers
Munich, Germany (SPX) Apr 19, 2014


Visualization of vibrations inside the Merapi volcano. Image courtesy Alex Breuer (TUM) / Christian Pelties (LMU).

A team of computer scientists, mathematicians and geophysicists at Technische Universitaet Muenchen (TUM) and Ludwig-Maximillians Universitaet Muenchen (LMU) have - with the support of the Leibniz Supercomputing Center of the Bavarian Academy of Sciences and Humanities (LRZ) - optimized the SeisSol earthquake simulation software on the SuperMUC high performance computer at the LRZ to push its performance beyond the "magical" one petaflop/s mark - one quadrillion floating point operations per second.

Geophysicists use the SeisSol earthquake simulation software to investigate rupture processes and seismic waves beneath the Earth's surface. Their goal is to simulate earthquakes as accurately as possible to be better prepared for future events and to better understand the fundamental underlying mechanisms. However, the calculations involved in this kind of simulation are so complex that they push even super computers to their limits.

In a collaborative effort, the workgroups led by Dr. Christian Pelties at the Department of Geo and Environmental Sciences at LMU and Professor Michael Bader at the Department of Informatics at TUM have optimized the SeisSol program for the parallel architecture of the Garching supercomputer "SuperMUC", thereby speeding up calculations by a factor of five.

Using a virtual experiment they achieved a new record on the SuperMUC: To simulate the vibrations inside the geometrically complex Merapi volcano on the island of Java, the supercomputer executed 1.09 quadrillion floating point operations per second. SeisSol maintained this unusually high performance level throughout the entire three hour simulation run using all of SuperMUC's 147,456 processor cores.

Complete parallelization
This was possible only following the extensive optimization and the complete parallelization of the 70,000 lines of SeisSol code, allowing a peak performance of up to 1.42 petaflops. This corresponds to 44.5 percent of Super MUC's theoretically available capacity, making SeisSol one of the most efficient simulation programs of its kind worldwide.

"Thanks to the extreme performance now achievable, we can run five times as many models or models that are five times as large to achieve significantly more accurate results. Our simulations are thus inching ever closer to reality," says the geophysicist Dr. Christian Pelties. "This will allow us to better understand many fundamental mechanisms of earthquakes and hopefully be better prepared for future events."

The next steps are earthquake simulations that include rupture processes on the meter scale as well as the resultant destructive seismic waves that propagate across hundreds of kilometers. The results will improve the understanding of earthquakes and allow a better assessment of potential future events.

"Speeding up the simulation software by a factor of five is not only an important step for geophysical research," says Professor Michael Bader of the Department of Informatics at TUM. "We are, at the same time, preparing the applied methodologies and software packages for the next generation of supercomputers that will routinely host the respective simulations for diverse geoscience applications."

Besides Michael Bader and Christian Pelties also Alexander Breuer, Dr. Alexander Heinecke and Sebastian Rettenberger (TUM) as well as Dr. Alice Agnes Gabriel and Stefan Wenk (LMU) worked on the project.

In June the results will be presented at the International Supercomputing Conference in Leipzig (ISC'14, Leipzig, 22-June 26, 2014; title: Sustained Petascale Performance of Seismic Simulation with SeisSol on SuperMUC)

The project was funded by the Volkswagen Foundation (ASCETE project), the Bavarian Competence Network for Technical and Scientific High Performance Computing (KONWIHR), the German Research Foundation (DFG) and the Leibniz Supercomputing Center of the Bavarian Academy of Sciences and Humanities. The continuing development of SeisSol is also supported by the "DEEP Extended Reach", VERCE and QUEST projects of the European Union.

.


Related Links
Technische Universitaet Muenchen
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECTONICS
Hot mantle drives elevation, volcanism along mid-ocean ridges
Providence RI (SPX) Apr 08, 2014
Scientists have shown that temperature differences deep within Earth's mantle control the elevation and volcanic activity along mid-ocean ridges, the colossal mountain ranges that line the ocean floor. The findings, published April 4 in the journal Science, shed new light on how temperature in the depths of the mantle influences the contours of the Earth's crust. Mid-ocean ridges form at t ... read more


TECTONICS
Oyster aquaculture could significantly improve Potomac River estuary water quality

Pioneering findings on the dual role of carbon dioxide in photosynthesis

Danone says China recall weighs on first-quarter sales

GM crops under the microscope at international debate

TECTONICS
New 'switch' could power quantum computing

Researchers bolster development of programmable quantum computers

Domain walls in nanowires cleverly set in motion

Scalable CVD process for making 2-D molybdenum diselenide

TECTONICS
Malaysia, Australia in deal on black box custody: report

Gulfstream announces 60-plane deal for China

Swiss voters set to sink Swedish jet fighter deal: poll

Air Force receives first production lot JASSM-ER missiles

TECTONICS
China gears up for huge car show, eyeing growth prospects

ORNL study pegs fuel economy costs of common practices

KYOCERA's Solar-Powered Recharging Station for Electric Vehicles Installed at SHINTEC HOZUMI for Disaster Prevention

Chinese dream trumps environment as cars sales boom

TECTONICS
Chinese gold demand may rise 20% by 2017: industry body

China Q1 growth slows to 7.3%: AFP survey

China consortium buys Peru copper mine stake for $5.85 bn

Swedish city introduces payment by hand scanning

TECTONICS
Warming Climate Has Consequences for Michigan's Forests

Nutrient-rich forests absorb more carbon

Fire and drought may push Amazonian forests beyond tipping point

Illegal logging widespread in Peru, says study

TECTONICS
NASA Highlights Magnetospheric Multiscale Mission at Local Fair

China uses satellite, drones to fight pollution

Mitsubishi Electric Begins Developing GOSAT-2 Satellite System

DMCii help Dutch company eLEAF provide much needed crop information to African farmers

TECTONICS
Never say never in the nano-world

Nanosheets and nanowires

Fabricating Nanostructures with Silk Could Make Clean Rooms Green Rooms

Scientists watch nanoparticles grow




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.