GPS News  
MARSDAILY
Drilling into Mars with Lasers
by Erin Gibbons, Student Collaborator at McGill University
Pasadena CA (JPL) Mar 23, 2022

Mars Perseverance Sol 376 - Left Mastcam-Z Camera: MastCam-Z image of a rock informally names Sid. The purple patch we 'drilled' into lies in the lower left-hand corner. Credits: NASA/JPL-Caltech/ASU.

Perseverance is adding a pop of color to Mars' regular repertoire: purple. The color palette of Mars' surface is one of muted hues. Burnt orange tones reflect the iron-bearing minerals that have rusted under an oxidizing atmosphere while soft greys characterize the un-rusted parent rock.

However, over the past year we have seen prominent patches of purple peppered atop the rocks. The patches range from thin veneers to thick splotches and generally have a smooth, dull texture. Other Mars rovers, like Curiosity and Opportunity, have also observed purple-colored rocks, but not with this kind of splotchy texture and certainly not at such an abundance.

We are keen to understand what these enigmatic rock coatings reveal about the history of Jezero. Did they form when ancient waters reacted with the rocks? Or did they form through millions of years of dust accumulation and cementation on an already arid world? We need more details about their make-up to be sure.

This was precisely the focus of a specialized experiment that I helped draft on Friday, March 11 (sol 377). My role on the mission is to help operate the SuperCam instrument, which can use a laser beam to "zap" rocks and determine their chemistry. The zapping process is very intense. Upon impact, the laser heats the rock to ~18,000F (10,000C), vaporizing a small amount of material and converting it into a plasma.

When the laser stops firing, the plasma cools and emits radiation at wavelengths that correspond to the chemical constituents of the vaporized material. We record this radiation and use it to interpret what the rocks are made of. An added benefit of this technique is that we can use the vaporization to effectively drill into a target: by repeatedly firing the laser on the same location, we vaporize increasingly more material and penetrate deeper, allowing us to study the interior.

To learn about the purple patches on Jezero's rocks, we aimed the laser at a small patch and commanded it to fire 150 times (5x more than our typical operation!). The goal is to vaporize through the purple material and into the rock below, thereby revealing how the chemistry changes between the two layers.

Analyses like these are extremely small - our 'drill' hole will be less than 1 mm deep - but could reveal clues about the environmental evolution in Jezero crater as a whole. Understanding how and when these purple coatings formed will help unravel how Jezero transitioned from a lake to a dustbowl.


Related Links
Perseverance Mars 2020
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
NASA's Perseverance rover hightails it to Martian Delta
Pasadena CA (JPL) Mar 19, 2022
The rover's self-driving capabilities will be put to the test this month as it begins a record-breaking series of sprints to its next sampling location. NASA's Perseverance Mars rover is trying to cover more distance in a single month than any rover before it - and it's doing so using artificial intelligence. On the path ahead are sandpits, craters, and fields of sharp rocks that the rover will have to navigate around on its own. At the end of the 3-mile (5-kilometer) journey, which began March 14 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Ukraine war rattles EU green farming plan

France says 10 million birds culled in massive flu outbreak

The scientists helping farmers kick the chemical habit

US drought pushes cotton prices to ten-year high

MARSDAILY
Researchers earn NASA grant to reinvent electronics manufacturing in space

Quantum physics sets a speed limit to electronics

Hot spin quantum bits in silicon transistors

Making quantum circuits more robust

MARSDAILY
Advanced Air Mobility looks ahead to automation

Canada to buy 88 F-35 fighter jets from Lockheed Martin

Algeria fighter jet crash kills pilot

Hong Kong halves flight suspensions triggered by Covid cases

MARSDAILY
Interurban Vehicle - Green and comfortable travel even on long journeys

Uber to integrate its network with New York yellow cabs

Toyota pauses most Japan production after quake

Indonesia begins electric car production with Hyundai plant

MARSDAILY
How Ukraine war left China's 'Nickel King' on hook for billions

Asian markets mixed, eyes on Ukraine talks and Shanghai lockdown

US sanctions on China over Ukraine not 'necessary or appropriate': Yellen

Putin plans to attend G20 summit: Russian ambassador

MARSDAILY
Ivory Coast walls up forest to fend off encroaching city

Lost children survive 25-day ordeal in Amazon

How Indigenous burning shaped the Klamath's forests for a millennia

EU urged to ban all imports linked to deforestation

MARSDAILY
Momentus' Vigoride vehicle completes thermal vacuum testing

MTG-I weather satellite passes tests in preparation for liftoff

UN wants worldwide weather warning systems within 5 years

Fleet Space Technologies to revolutionise mineral exploration with launch of Geosphere

MARSDAILY
Atom by atom: building precise smaller nanoparticles with templates

Ring my string: Building silicon nano-strings

Nanotube films open up new prospects for electronics

Using the universe's coldest material to measure the world's tiniest magnetic fields









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.