GPS News  
TECH SPACE
Disorder plays a key role in phase transitions of materials
by Staff Writers
Madrid, Spain (SPX) Nov 05, 2018

A schematic illustration of the Vanadium Dioxide atomic structure.

Phase transitions are common occurrences that dramatically change the properties of a material, the most familiar being the solid-liquid-gas transition in water. Each phase corresponds to a new arrangement of the atoms within the material, which dictate the properties of the substance.

While these arrangements can be easily studied in each phase individually, it is significantly harder to study how they change their arrangements from one state to the other during a phase transition. This is because atoms are incredibly small, and the distances by which they move are correspondingly tiny and, as a result, they can occur very quickly. Furthermore, materials consist of over 1023 atoms, making it extremely challenging to track their individual motions.

One particularly intriguing phase change is the insulator-metal transition in the material Vanadium Dioxide (VO2). At room temperature VO2 is an insulator, and inside the crystal, the vanadium ions form periodic chains of vanadium pairs, known as dimers.

When this compound is heated to just above room temperature, the atomic structure changes and the pairs are broken, but the material remains a solid. At the same time, the conductivity of the material increases by over 5 orders of magnitude and has a diverse range of applications from energy-free climate control to infrared sensing.

One of the intriguing properties of VO2 is that the phase transition can occur incredibly rapidly with the only limit appearing to be how fast you can heat the system. In order to explain this incredible speed, scientists suggested that there must be cooperative motion between the vanadium ions, i.e. each vanadium pair breaks in the same way at the same time.

In order to understand atomic structure of materials, scientists use a technique known as diffraction. Over the past 30 years, this method has been extended to include time resolution, with the goal of obtaining the "molecular movie", i.e. to directly film the motion of the atoms during the transition. When this technique was first applied to VO2 in 2007, it seemed to confirm the picture of coordinated motion.

However, diffraction only measures the average atomic position and reveals little information about the actual path taken by the individual atoms involved. For example, protestors marching down the avenue Passeig de Gracia in Barcelona move in a uniform, regular coordinated fashion, whereas a group of tourists may cover the same distance, on average, but in a completely uncoordinated fashion, wondering around and randomly halting to look at the architecture of the city. In diffraction, these processes would look the same.

Now, in a recent study, published in Science, ICFO researchers Prof. Simon Wall, PhD student Luciana Vidas and former post doc Timothy miller, in collaboration with scientists from Duke University, SLAC National Accelerator Laboratory, Japan Synchrotron Radiation Research Institute, Stanford University and Oak Ridge National Laboratory have used a new technique that is capable of resolving the atomic pathways.

To do this the researchers made use of the world's first X-ray laser situated in the SLAC National Accelerator Laboratory. This new light source enabled researchers to examine the crystal structure with unprecedented details using a technique known as total X-ray scattering. In contrast to the prevailing view, the authors found that the break-up of the vanadium pairs was extremely disorderly and more like the tourists, than the marchers.

As Simon Wall, first author of the paper comments "This is the first time we have really been able to observe how atoms re-arrange in a phase transition without assuming the motion is uniform and suggests that the text book understanding of these transitions needs to be re-written. We now plan to use this technique to explore more materials to understand how wide-spread the role of disorder is".

To date, VO2 has often been used as a guide for understanding the phases in more complex materials such as high temperature superconductors. Thus the lessons learnt here suggest that these materials will also need to be re-examined.

Furthermore, understanding the role of disorder in vibrational materials could imply a new perspective on how to control matter, especially in the field of superconductivity, which could have major implications for nano-technology and optoelectronics.

Research paper


Related Links
ICFO-The Institute of Photonic Sciences
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Bose-Einstein condensate generated in space for the first time
Mainz, Germany (SPX) Nov 01, 2018
A team of scientists from Germany has succeeded in creating a Bose-Einstein condensate for the first time in space on board a research rocket. On January 23, 2017 at 3:30 a.m. Central European Time, the MAIUS-1 mission was launched into space from the Esrange Space Center in Sweden. After a detailed analysis, the results have been published recently in the journal Nature. The Bose-Einstein condensate, an ultracold gas, can be used as a starting point for performing important measurements in zero g ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Chocolate's origin 1,500 years earlier than thought, archaeologists find

Brazil's Bolsonaro to merge environment, farm ministries

France suspends use of popular pesticide after dozens sickened

A topical gel to protect farmers from lethal effects of pesticides

TECH SPACE
US accuses China, Taiwan firms with stealing secrets from chip giant Micron

Tianhe-2 supercomputer works out the criterion for quantum supremacy

Researchers create scalable platform for on-chip quantum emitters

US imposes restrictions on Chinese tech firm

TECH SPACE
Indonesia warns over 'fake news' after deadly jet crash

Chinese airlines' profit hit as yuan weakens, fuel costs rise

US indicts 10 Chinese over scheme to steal aerospace tech

BAE to complete Hawk Mk127 upgrades for Australia in 2019

TECH SPACE
Ford and Baidu partner up on testing self-driving cars in China

Driverless vehicle experts get hands on experience in South Australia

Lyft and Uber out to be everyday rides with passes

European car stocks surge on report of China tax cut

TECH SPACE
China battles 'unfair' trader image with import expo

Chinese premier meets US lawmakers amid tensions

Standard Chartered profits up by quarter in January-September

China factory activity slows in October amid trade war woes

TECH SPACE
Saving the precious wood of Gabon's forests from illegal logging

Saving the precious wood of Gabon's forests from illegal logging

Salmon graveyard gives rise to forest in Alaska

Brazil's Amazon at risk if Bolsonaro wins presidency: ecologists

TECH SPACE
Study reveals how soil bacteria are primed to consume greenhouse gas

Japan launches environment monitoring satellite

China, France launch satellite to study climate change

Location of large mystery source of banned ozone depleting substance uncovered

TECH SPACE
Caltech engineers create an optical gyroscope smaller than a grain of rice

Researchers discover directional and long-lived nanolight in a 2D material

Big discoveries about tiny particles

Precise control of multimetallic one-nanometer cluster formation achieved









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.