. GPS News .




.
ENERGY TECH
Discovery may overcome obstacle for quantum computing
by Staff Writers
Vancouver, Canada (SPX) Jul 22, 2011

-

Researchers have made a major advance in predicting and quashing environmental decoherence, a phenomenon that has proven to be one of the most formidable obstacles standing in the way of quantum computing.

The findings - based on theoretical work conducted at the University of British Columbia and confirmed by experiments at the University of California Santa Barbara - are published online in the July 20 issue of the journal Nature.

Quantum mechanics states that matter can be in more than one physical state at the same time - like a coin simultaneously showing heads and tails. In small objects like electrons, physicists have had success in observing and controlling these simultaneous states, called "state superposition."

Larger, more complex physical systems appear to be in one consistent physical state because they interact and "entangle" with other objects in their environment. This entanglement makes these complex objects "decay" into a single state - a process called decoherence.

Quantum computing's potential to be exponentially faster and more powerful than any conventional computer technology depends on switches that are capable of state superposition - that is, being in the "on" and "off" positions at the same time. Until now, all efforts to achieve such superposition with many molecules at once were blocked by decoherence.

"For the first time we've been able to predict and control all the environmental decoherence mechanisms in a very complex system, in this case a large magnetic molecule called the 'Iron-8 molecule,'" said Phil Stamp, UBC professor of physics and astronomy and director of the Pacific Institute of Theoretical Physics.

"Our theory also predicted that we could suppress the decoherence, and push the decoherence rate in the experiment to levels far below the threshold necessary for quantum information processing, by applying high magnetic fields."

In the experiment, the California researchers prepared a crystalline array of Iron-8 molecules in a quantum superposition, where the net magnetization of each molecule was simultaneously oriented up and down. The decay of this superposition by decoherence was then observed in time - and the decay was spectacularly slow, behaving exactly as the UBC researchers predicted.

"Magnetic molecules now suddenly appear to have serious potential as candidates for quantum computing hardware," said Susumu Takahashi, assistant professor of chemistry and physics at the University of Southern California. "This opens up a whole new area of experimental investigation with sizeable potential in applications, as well as for fundamental work."

Takahashi conducted the experiments while at UC Santa Barbara and analyzed the data while at UC Santa Barbara and the University of Southern California.

"Decoherence helps bridge the quantum universe of the atom and the classical universe of the everyday objects we interact with," Stamp said. "Our ability to understand everything from the atom to the Big Bang depends on understanding decoherence, and advances in quantum computing depend on our ability to control it."




Related Links
University of British Columbia
Powering The World in the 21st Century at Energy-Daily.com

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
New Mathematical Framework That Could Help Convert "Junk" Energy Into Useful Power
Buffalo NY (SPX) Jul 22, 2011
A University at Buffalo-led research team has developed a mathematical framework that could one day form the basis of technologies that turn road vibrations, airport runway noise and other "junk" energy into useful power. The concept all begins with a granular system comprising a chain of equal-sized particles - spheres, for instance - that touch one another. In a paper in Physical R ... read more


ENERGY TECH
Summer's superfruit challenged: Latin American blueberries found to be 'extreme superfruits'

Soil microbes accelerate global warming

Japan's contaminated beef scare widens

Dry onion skin has a use

ENERGY TECH
RIM cutting 2,000 jobs, COO retiring

Soft Memory Device Opens Door To New Biocompatible Electronics

Expert help from a distance

NIST prototype optics table on a chip places microwave photon in 2 colors at once

ENERGY TECH
Back in black, Philippine Airlines sees hard times

Israel approves new Eilat international airport

Boeing casts net wider for Brazil jet deal

Flight Options buys Embraer executive jets

ENERGY TECH
Toyota domestic output dips 38% in first half

ICT and automotive: New app reduces motorway pile-ups by 40 percent

Toyota to merge units in face of strong yen

Belgium's highways shine into space - but for how long?

ENERGY TECH
Activists warn against foreign investors in Myanmar

Clinton in swipe at nations that flout trade rules

Peru's Humala aims to calm investors

China and ASEAN members sign agreement

ENERGY TECH
Forests soak up third of fossil fuel emissions: study

Lack of meaningful land rights threaten Indonesian forests

Forest trees remember their roots

Tribes welcome Indonesia's pledge to forest people

ENERGY TECH
Landsat Satellites Track Continued Missouri River Flooding

Deal signed for space-based imaging

Aura Satellite Measures Pollution Butterfly from Fires in Central Africa

Strong El Nino could bring increased sea levels, storm surges to US East Coast

ENERGY TECH
Hydrogen may be key to growth of high-quality graphene

The wonders of graphene on display

City dwellers produce as much CO2 as countryside people do

Graphene may gain an 'on-off switch,' adding semiconductor to long list of achievements


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement