Subscribe free to our newsletters via your
. GPS News .




ROBO SPACE
Device could greatly improve speech and image recognition
by Staff Writers
Riverside CA (SPX) May 13, 2015


Clockwise are: photo of the prototype device; schematic of the eight-terminal magnonic holographic memory prototype; and a collection of experimental data obtained for two magnonic matrixes. Image courtesy UC Riverside. For a larger version of this image please go here.

Researchers at the University of California, Riverside Bourns College of Engineering and the Russian Academy of Sciences have successfully demonstrated pattern recognition using a magnonic holographic memory device, a development that could greatly improve speech and image recognition hardware.

Pattern recognition focuses on finding patterns and regularities in data. The uniqueness of the demonstrated work is that the input patterns are encoded into the phases of the input spin waves.

Spin waves are collective oscillations of spins in magnetic materials. Spin wave devices are advantageous over their optical counterparts because they are more scalable due to a shorter wavelength. Also, spin wave devices are compatible with conventional electronic devices and can be integrated within a chip.

The researchers built a prototype eight-terminal device consisting of a magnetic matrix with micro-antennas to excite and detect the spin waves. Experimental data they collected for several magnonic matrixes show unique output signatures correspond to specific phase patterns. The microantennas allow the researchers to generate and recognize any input phase pattern, a big advantage over existing practices.

Then spin waves propagate through the magnetic matrix and interfere. Some of the input phase patterns produce high output voltage, and other combinations results in a low output voltage, where "high" and "low" are defined regarding the reference voltage (i.e. output is high if the output voltage is higher than 1 millivolt, and low if the voltage is less than 1 millivolt.

It takes about 100 nanoseconds for recognition, which is the time required for spin waves to propagate and to create the interference pattern.

The most appealing property of this approach is that all of the input ports operate in parallel. It takes the same amount of time to recognize patterns (numbers) from 0 to 999, and from 0 to 10,000,000. Potentially, magnonic holographic devices can be fundamentally more efficient than conventional digital circuits.

The work builds upon findings published last year by the researchers, who showed a 2-bit magnonic holographic memory device can recognize the internal magnetic memory states via spin wave superposition. That work was recognized as a top 10 physics breakthrough by Physics World magazine.

"We were excited by that recognition, but the latest research takes this to a new level," said Alex Khitun, a research professor at UC Riverside, who is the lead researcher on the project. "Now, the device works not only as a memory but also a logic element."

The latest findings were published in a paper called "Pattern recognition with magnonic holographic memory device" in the journal Applied Physics Letters. In addition to Khitun, authors are Frederick Gertz, a graduate student who works with Khitun at UC Riverside, and A. Kozhevnikov, Y. Filimonov and G. Dudko, all from the Russian Academy of Sciences.

Holography is a technique based on the wave nature of light which allows the use of wave interference between the object beam and the coherent background. It is commonly associated with images being made from light, such as on driver's licenses or paper currency. However, this is only a narrow field of holography.

Holography has been also recognized as a future data storing technology with unprecedented data storage capacity and ability to write and read a large number of data in a highly parallel manner.

The main challenge associated with magnonic holographic memory is the scaling of the operational wavelength, which requires the development of sub-micrometer scale elements for spin wave generation and detection.

The research was supported in part by: The Center for Function Accelerated nanoMaterial Engineering (FAME), which is funded with $35 million from the Semiconductor Research Corporation (SRC), a consortium of semiconductor industry companies; the Defense Advanced Research Projects Agency; and the National Science Foundation under the NEB2020 Grant ECCS-1124714.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Riverside
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ROBO SPACE
IBM's Watson extends cancer insights to 14 new centers
New York (AFP) May 5, 2015
IBM on Tuesday said 14 US cancer treatment centers would join a partnership to get personalized care treatment plans from the company's Watson supercomputer. The project extends the use of Watson for cancer treatment based on a patient's own DNA and insights from a large database of medical literature and studies. "Determining the right drug combination for an advanced cancer patient is ... read more


ROBO SPACE
Startup turns old shipping containers into farms

Simulating seasons

Norway plans to slash subsidies to fur farms

Pesticides alter bees' brains

ROBO SPACE
Two-dimensional semiconductor comes clean

Defects in atomically thin semiconductor emit single photons

Researchers develop acoustically driven controls for smartphones

Printing silicon on paper, with lasers

ROBO SPACE
France, India pledge swift conclusion to fighter jet deal

Touch sensors on bat wings guide flight

Airbus DS, Cisco partner in key business areas

Singapore requests upgrade of its F-16s

ROBO SPACE
Google self-driving cars not crash-proof

Tesla ramps up output in first quarter but losses rise

China auto sales down 0.5% in April: industry group

China auto giant FAW gets new chief amid graft scandal

ROBO SPACE
Chinese turn Paris suburb into Europe's biggest fashion market

Chinese Premier Li to visit South America: Beijing

Trade with Cuba on Russian radar

China April exports down 6.4% in new sign of weakness

ROBO SPACE
Forests could be the trump card in efforts to end global hunger

Forest canopies buffer against climate change

Partially logged rainforests emitting more carbon than previously thought

Conifer study illustrates twists of evolution

ROBO SPACE
NASA Aids Response to Nepal Quake

Dull forest glow yields orbital tracking of photosynthesis

MOU between ISRO Department of Land Resources to beef up EO capacity

Technologies enable ambitious MMS mission

ROBO SPACE
Chemists strike nano-gold with 4 new atomic structures

New technique for exploring structural dynamics of nanoworld

Nanotubes with 2 walls have singular qualities

Happily ever after: Scientists arrange protein-nanoparticle marriage




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.