GPS News  
TECH SPACE
Detecting damage in non-magnetic steel with the help of magnetism
by Staff Writers
Mainz, Germany (SPX) Jul 25, 2018

Dr. Martin Jourdan and Bachelor degree student Moritz Kramer coating non-magnetic steel with various magnetic films, each 20 nanometers thick, using the coating apparatus at JGU's Institute of Physics.

Wear, corrosion, material fatigue are signs of degradation that are common to most materials. This makes it all the more important to detect damage early, preferably on the micrometer scale. Magnetic test methods are often used for this purpose, which was previously impossible with non-magnetic steel. Researchers from Kaiserslautern and Mainz have now developed a process in which they apply a thin magnetic layer to steel.

Changes in the microstructure can thus be detected by changes in magnetic effects. Materials such as aluminum can also be tested in this way.The corresponding paper has been published recently in the Journal of Magnetism and Magnetic Materials.

Steel is one of the most frequently used materials. We use it in many variants, for example in the form of stainless steel, high-strength quenched and tempered steel, or low-priced structural steel. Steels can be magnetic or non-magnetic. They are used in cutlery, in automotive components, in steel girders of buildings, and in bridges.

At times, steel is exposed to high temperatures and stress. "This can result in microstructural changes, cracks, or component failure," said Dr. Marek Smaga, a researcher at the Department of Materials Science at Technische Universitat Kaiserslautern (TUK). This is what experts refer to as material fatigue. Initially, such damage is only visible on the micrometer level.

With magnetic testing methods, however, it is not yet possible to detect changes in this scale in non-magnetic steel at an early stage. Engineers from TUK and physicists from Johannes Gutenberg University Mainz (JGU) are working on this problem and are presenting a solution in their current study. The unique feature of their method is that it makes use of magnetic effects, even if the material being tested is non-magnetic.

The Mainz-based researchers coated a non-magnetic steel with different magnetic films, each 20 nanometers thin and composed of terfenol-D, an alloy of the chemical elements terbium, iron, and dysprosium, or of permalloy, a nickel-iron compound. The physicists then used a so-called Kerr microscope to check whether strains of the steel can be detected in the microscopic range.

"This is achieved using the so-called Kerr effect, which allows the magnetic microstructures, the so-called domains, to be imaged by rotating the polarization direction of light," explained Dr. Marek Smaga.

The scientists examined magnetically coated steel plates a few millimeters thick that had previously been exposed to mechanical stress. "We observed a characteristic change in the magnetic domain structure," explained Dr. Martin Jourdan from the Institute of Physics at JGU. "Microscopic strain in non-magnetic steel causes the direction of magnetization of the thin layer to change."

Compared to conventional testing procedures, this method has the advantage of detecting signs of fatigue much earlier as it is effective at the micrometer level. The researchers' method could be used in new testing techniques in the future. In addition, the technique is not only interesting for non-magnetic steel. Other materials such as aluminum, titanium, and certain composite materials could also be treated with such a layer.

The project was part of the work undertaken by the Transregional Collaborative Research Center (CRC/TRR) "Spin+X: Spin in its collective environment", which is based at TU Kaiserslautern and Johannes Gutenberg University Mainz and financed by the German Research Foundation (DFG).

The CRC/TRR involves interdisciplinary teams of researchers from the fields of chemistry, physics, mechanical engineering, and process engineering, who undertake research into magnetic effects that are to be transferred to application. The primary focus is on the phenomenon of the spin. Physicists use this term to refer to the quantum mechanical momentum of a quantum particle, such as an electron or proton. This forms the basis of many magnetic effects.

Research Report: "Strain detection in non-magnetic steel by Kerr-microscopy of magnetic tracer layers"


Related Links
Johannes Gutenberg Universitaet Mainz
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
UV narrow-band photodetector based on indium oxide nanocrystals
Nizhny Novgorod, Russia (SPX) Jul 19, 2018
An international team of researchers from Russia and India has created a narrow-band UV photodetector based on indium oxide nanocrystals embedded in a thin film of aluminum oxide Semiconductor quantum dots (nanocrystals just a few nanometers in size) have attracted researchers' attention due to the size dependent effects that determine their novel electrical and optical properties. By changing the size of such objects, it is possible to adjust the wavelength of the emission they absorb, thus imple ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Dying groundskeeper to testify in Roundup cancer trial

Japan lifts ban on Canadian wheat imports

Cameroon's anglophone crisis hits palm oil, cocoa production

China's 'livestock revolution' demands 'new transition'

TECH SPACE
Scientists unlock signal frequency control of precision atom qubits

A step closer to single-atom data storage

Quantum dot white LEDs achieve record efficiency

Semiconductor quantum transistor points to photon-based computing

TECH SPACE
KC-46 tanker aircraft completes flight tests ahead of first delivery

Boeing awarded $264M contract for MH-47 support

U.K. to stick with Eurofighter development in air combat strategy

U.S. Army contracts Boeing for four Chinook helicopters

TECH SPACE
EU says VW repairs most cars with cheating devices

Elon Musk's latest outburst raises doubts on leadership

Washington state sets high bar for electric vehicles

Departing Apple engineer stole autonomous car tech: FBI

TECH SPACE
China's Xi holding up deal to resolve trade dispute: Trump adviser

Mnuchin pushes for EU, China concessions amid trade stalemate

Trump threatens tariffs on all $505bn of Chinese imports

Stimulus measures push Chinese shares higher

TECH SPACE
Study shows 5,000 percent increase in native trees on rat-free Palmyra Atoll

Brazil's Forest Code can balance the needs of agriculture and the environment

Pollution makes trees more vulnerable to drought

Brazil's green candidate aims to restore 'credibility'

TECH SPACE
Billion-year-old lake deposit yields clues to Earth's ancient biosphere

MetOp-C launch campaign kicks off

China to beef up CFC inspections as UN investigates illegal emissions

Aist-2D high resolution images received

TECH SPACE
Physicists uncover why nanomaterial loses superconductivity

Squeezing light at the nanoscale

A new way to measure energy in microscopic machines

AI-based method could speed development of specialized nanoparticles









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.