Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
Designer electronics out of the printer
by Staff Writers
Munich, Germany (SPX) Jun 22, 2015


Organic electronics, based on conducting polymers, are hailed as a promising future market. This is the cover illustration of Advanced Materials. Image courtesy Christoph Hohmann / Nanosystems Initiative Munich. For a larger version of this image please go here.

They are thin, light-weight, flexible and can be produced cost- and energy-efficiently: printed microelectronic components made of synthetics. Flexible displays and touch screens, glowing films, RFID tags and solar cells represent a future market.

In the context of an international cooperation project, physicists at the Technische Universitat Munchen (TUM) have now observed the creation of razor thin polymer electrodes during the printing process and successfully improved the electrical properties of the printed films.

Solar cells out of a printer? This seemed unthinkable only a few years ago. There were hardly any alternatives to classical silicon technology available. In the mean time touch screens, sensors and solar cells can be made of conducting polymers. Flexible monitors and glowing wall paper made of organic light emitting diodes, so-called OLEDs, are in rapid development. The "organic electronics" are hailed as a promising future market.

However, the technology also has its pitfalls: To manufacture the components on an industrial scale, semiconducting or insulating layers - each a thousand times thinner than a human hair - must be printed onto a carrier film in a predefined order. "This is a highly complex process, whose details need to be fully understood to allow custom-tailored applications," explains Professor Peter Muller-Buschbaum of the Chair of Functional Materials at TU Munchen.

A further challenge is the contacting between flexible, conducting layers. Hitherto electronic contacts made of crystalline indium tin oxide were frequently used. However, this construction has numerous drawbacks: The oxide is more brittle than the polymer layers over them, which limits the flexibility of the cells. Furthermore, the manufacturing process also consumes much energy. Finally, indium is a rare element that exists only in very limited quantities.

Polymers in X-ray light
A few months ago, researchers from the Lawrence Berkeley National Laboratory in California for the first time succeeded in observing the cross-linking of polymer molecules in the active layer of an organic solar cell during the printing process. In collaboration with their colleagues in California, Muller-Buschbaum's team took advantage of this technology to improve the characteristics of the polymer electronic elements.

The researchers used X-ray radiation generated in the Berkley synchrotron for their investigations. The X-rays are directed to the freshly printed synthetic layer and scattered. The arrangement and orientation of the molecules during the curing process of the printed films can be determined from changes in the scattering pattern.

"Thanks to the very intensive X-ray radiation we can achieve a very high time resolution," says Claudia M. Palumbiny. In Berkeley the physicist from the TUM investigated the "blocking layer" that sorts and selectively transports the charge carriers in the organic electronic components. The TUM research team is now, together with its US colleagues, publishing the results in the trade journal Advanced Materials.

Custom properties
"In our work, we showed for the first time ever that even small changes in the physico-chemical process conditions have a significant influence on the build-up and properties of the layer," says Claudia M. Palumbiny. "Adding solvents with a high boiling point, for example, improves segregation in synthetics components. This improves the crystallization in conducting molecules. The distance between the molecules shrinks and the conductivity increases.

In this manner stability and conductivity can be improved to such an extent that the material can be deployed not only as a blocking layer, but even as a transparent, electrical contact. This can be used to replace the brittle indium tin oxide layers. "At the end of the day, this means that all layers could be produced using the same process," explains Palumbiny. "That would be a great advantage for manufacturers."

To make all of this possible one day, TUM researchers want to continue investigating and optimizing the electrode material further and make their know-how available to industry. "We have now formed the basis for pushing ahead materials development with future investigations so that these can be taken over by industrial enterprises," explains Prof. Muller-Buschbaum.

The research was supported by the GreenTech Initiative "Interface Science for Photovoltaics" (ISPV) of the EuroTech Universities together with the International Graduate School of Science and Engineering (IGSSE) at TUM and by the Cluster of Excellence "Nanosystems Initiative Munich" (NIM). Further support came from the Elite Network of Bavaria's International Doctorate Program "NanoBioTechnology" (IDK-NBT) and the Center for NanoScience (CeNS) and from "Polymer-Based Materials for Harvesting Solar Energy" (PHaSE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences. Portions of the research were carried out at the Advanced Light Source which receives support by the Office of Basic Energy Sciences of the U.S. Department of Energy.

Publication: The Crystallization of PEDOT:PSS Polymeric Electrodes Probed In Situ during Printing Claudia M. Palumbiny, Feng Liu, Thomas P. Russell, Alexander Hexemer, Cheng Wang, and Peter Muller-Buschbaum Advanced Materials, June 10, 2015, 27, 22, 3391-3397 - DOI: 10.1002/adma.201500315


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Technische Universitaet Muenchen
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
New boron compounds for organic light-emitting diodes
Frankfurt, Germany (SPX) Jun 15, 2015
Major advances in the field of organic electronics are currently revolutionising previously silicon-dominated semiconductor technology. Customised organic molecules enable the production of lightweight, mechanically flexible electronic components that are perfectly adapted to individual applications. Chemists at the Goethe University have now developed a new class of organic luminescent ma ... read more


CHIP TECH
Evolution study finds massive genome shift in one generation

Canada requests sanctions against US over meat labelling spat

Wild bees are unpaid farmhands worth billions: study

EU lawmakers back animal cloning ban

CHIP TECH
New boron compounds for organic light-emitting diodes

Exploiting the extraordinary properties of a new semiconductor

Futuristic components on silicon chips, fabricated successfully

New chip makes testing for antibiotic-resistant bacteria faster, easier

CHIP TECH
Green love-in at Paris Air Show but weaker sales

Jacobs Engineering continues work on Australian F-35 bases

France says India to seal deal on Rafale jets in '2 to 3 months'

UTC to rid itself of Sikorsky Aircraft

CHIP TECH
Germany, world champion in car-sharing

California ruling against Uber hits at business model

India's booming taxi-app firms endure bumpy ride

China tech giant Baidu to develop driverless car: media

CHIP TECH
China gives new twist to world's second tallest building

Japan banking giant to sell country's first yuan bond

Australia and China sign bumper free trade deal

China deports British investigator, wife in GSK case

CHIP TECH
Changing climate prompts boreal forest shift

Predicting tree mortality

When trees aren't 'green'

Japanese tree plantations causing nitrogen pollution

CHIP TECH
EOMAP provides shallow water bathymetry for the South China Sea

New calculations to improve CO2 monitoring from space

BlackSky Global reveals plan to image Earth in near real-time

NASA Releases Detailed Global Climate Change Projections

CHIP TECH
Unlocking nanofibers' potential

Scientists observe photographic exposure live at the nanoscale

Measuring the mass of molecules on the nano-scale

Novel X-ray lens sharpens view into the nano world




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.