Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Dense star clusters shown to be binary black hole factories
by Staff Writers
Evanston IL (SPX) Jul 30, 2015


File image.

The coalescence of two black holes -- a very violent and exotic event -- is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been impossible so far.

Colliding black holes do, however, release a phenomenal amount of energy as gravitational waves. The first observatories capable of directly detecting these 'gravity signals' -- ripples in the fabric of spacetime first predicted by Albert Einstein 100 years ago -- will begin observing the universe later this year.

When the gravitational waves rolling in from space are detected on Earth for the first time, a team of Northwestern University astrophysicists predicts astronomers will "hear," through these waves, five times more colliding black holes than previously expected. Direct observations of these mergers will open a new window into the universe.

"This information will allow astrophysicists to better understand the nature of black holes and Einstein's theory of gravity," said Frederic A. Rasio, a theoretical astrophysicist and senior author of the study. "Our study indicates the observatories will detect more of these energetic events than previously thought, which is exciting."

Rasio is the Joseph Cummings Professor in the department of physics and astronomy in Northwestern's Weinberg College of Arts and Sciences.

Rasio's team, utilizing observations from our own galaxy, report in a new modeling study two significant findings about black holes:

+ Globular clusters (spherical collections of up to a million densely packed stars found in galactic haloes) could be factories of binary black holes (two black holes in close orbit around each other); and

+ The sensitive new observatories potentially could detect 100 merging binary black holes per year forged in the cores of these dense star clusters. (A burst of gravitational waves is emitted whenever two black holes merge.) This number is more than five times what previous studies predicted.

The study has been accepted for publication by the journal Physical Review Letters and is scheduled to be published.

"Gravitational waves will let us hear the universe for the first time, through the ripples made by astronomical events in spacetime," said Carl L. Rodriguez, lead author of the paper. He is a Ph.D. student in Rasio's research group.

"Up until now, all of our observations have been from telescopes, literally looking out at the universe. Detecting gravitational waves will change that. And the cool part is we can hear things we could never see, such as binary black hole mergers, the subject of our study," he said.

Rodriguez and colleagues used detailed computer models to demonstrate how a globular cluster acts as a dominant source of binary black holes, producing hundreds of black hole mergers over a cluster's 12-billion-year lifetime.

By comparing the models to recent observations of clusters in the Milky Way galaxy and beyond, the results show that the next generation of gravitational-wave observatories could see more than 100 binary black hole mergers per year.

Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory) is one of the new gravitational-wave observatories. Slated to begin operation later this year, Advanced LIGO is a large-scale physics experiment designed to directly detect gravitational waves of cosmic origin. Laser interferometers detect gravitational waves from the minute oscillations of suspended mirrors set into motion as the waves pass through the Earth.

Rasio and Rodriguez are members of Northwestern's Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA).

For the study, the research team used a parallel computing code for modeling star clusters developed through a CIERA-supported interdisciplinary collaboration between Northwestern's physics and astronomy department and electrical engineering and computer science department.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Northwestern University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Treasure hunting in archive data reveals clues about black holes' diet
Garching, Germany (SPX) Jul 28, 2015
Using archival data from the Sloan Digital Sky Survey, as well as from the XMM-Newton and Chandra X-ray telescopes, a team of astronomers at the Max Planck Institute for Extraterrestrial Physics have discovered a gigantic black hole, which is probably destroying and devouring a big star in its vicinity. With a mass of 100 million times more than our Sun, this is the largest black hole caught in ... read more


TIME AND SPACE
Food tech startups raking in cash: survey

LED sole-source lighting effective in bedding plant seedling production

Rice grains hold big promise for greenhouse gas reductions, bioenergy

How a kernel got naked and corn became king

TIME AND SPACE
Quantum networks: Back and forth are not equal distances

New chiral property of silicon, with photonic applications found

New type of modulator for the future of data transmission

This could replace your silicon computer chips

TIME AND SPACE
US delivers F-16s to Egypt ahead of Kerry visit: embassy

Engine fed steady diet of volcanic ash

Could 'Windbots' Someday Explore the Skies of Jupiter?

Harris enhancing targeting capabilities Navy aircraft

TIME AND SPACE
Uber valuation tops $50 bn with latest funding: report

Toyota falls behind VW in world's biggest automaker race

Nissan's three-month profit up 36% on sales in US, China

GM to invest $5 bn on new Chevrolet for emerging markets

TIME AND SPACE
WTO strikes 'landmark' deal to cut tariffs on IT products

British PM heads to Southeast Asia with trade, IS on agenda

Maldives to allow foreigners to own land

Wal-Mart buys remaining shares of Chinese firm Yihaodian

TIME AND SPACE
Drivers of temporal changes in temperate forest plant diversity

Myanmar amnesty frees Chinese loggers, political prisoners

Mangroves help protect against sea level rise

China ire as Myanmar jails scores for illegal logging

TIME AND SPACE
NASA satellite images Alaska's scorched earth

California 'Rain Debt' Equal to Average Full Year of Precipitation

Space-eye-view could help stop global wildlife decline

Satellites peer into rock 50 miles beneath Tibetan Plateau

TIME AND SPACE
Nanotechnology research leads to super-elastic conducting fibers

Breakthrough in knowledge of how nanoparticles grow

On the way to breaking the terahertz barrier for graphene nanoelectronics

A most singular nano-imaging technique




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.