Subscribe free to our newsletters via your
. GPS News .




WATER WORLD
Delving into the molecular mechanism behind deep-sea bacteria's pressure tolerance
by Staff Writers
Washington DC (SPX) Jul 31, 2012


File image.

The Mariana Trench is the deepest feature of the Earth's surface. The water column there exerts a pressure of more than one thousand times normal atmospheric pressure at sea level, enough pressure to crush an SUV. Yet many organisms thrive in this seemingly inhospitable environment. A Japanese research team has been investigating how deep-sea bacteria adapt to such high-pressure conditions.

They have identified a structural change that confers pressure-resistant properties on a particular protein found in bacteria.

The findings, which the team will present at the meeting of the American Crystallographic Association (ACA), held July 28-Aug. 1, in Boston, Mass., may one day help guide the design of enzymes for use in high-pressure chemical industrial processes.

In general, pressure, like that caused by a water column thousands of feet deep, deforms proteins. As the proteins change shape, water can penetrate the protein's interior. Some proteins are better able to resist this incursion of water, but the molecular mechanisms of the pressure resistance aren't yet well understood.

"Our group is focusing on high-pressure protein crystallography, using 3-isopropylmalate dehydrogenase (IPMDH) as a model protein.

The goal is to delve into the principles of the molecular mechanism of the pressure tolerance of proteins by comparing the structures of IPMDHs from organisms that thrive in high-pressure environments and those that are sensitive to high-pressure pressure environments," explains Nobuhisa Watanabe, a professor at the Synchrotron Radiation Research Center, Nagoya University.

To create the high pressures necessary for their studies, the team uses a diamond anvil cell (DAC), which consists of two opposing diamonds with a gasket compressed between the culets (the small, flat facet at the bottom of the diamonds).

The team's big discovery so far is that the initial water penetration at the molecular surface of the side opposite to the active site of IPMDH is unique.

"At the site of the penetration, there is a difference of amino acid between IPMDHs from bacteria that thrive in high-pressure environments and those that are sensitive to it. Based on this data, we substituted one amino acid at the site of the IPMDH from pressure-sensitive bacteria and checked its activity under pressure," says Watanabe.

"And as we expected, only this one residue-substituted IPMDH, which has 364 amino acids in total, achieved pressure resistance comparable to the bacteria that thrive in high-pressure environments."

This means that it may soon be possible to synthesize designer pressure-resistant proteins. The team plans to continue their high-pressure studies of several other proteins to try to discover the physical principles behind pressure resistance mechanisms that enable bacteria to thrive in high-pressure conditions.

.


Related Links
American Institute of Physics
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Scotland moves to defuse 'prawn war'
Edinburgh, Scotland (UPI) Jul 30, 2012
Scotland has introduced unprecedented fishing restrictions in a move to defuse a "prawn war" between west coast trawlers and their North Sea counterparts. A severe shortage of prawn off Scotland's east coast this year prompted about 50 additional North Sea fishing vessels to head to the country's west coast, where locals feared their presence would deplete the prawn catch well before it ... read more


WATER WORLD
Public strongly supports programs helping farmers adapt to climate change

Study: All chickens have Asian roots

Japanese Kobe beef debuts in Hong Kong

Isolated Paraguay pledged farmers' support

WATER WORLD
Japan's Toshiba falls into quarterly net loss

World's smallest semiconductor laser created by University of Texas scientists

Switching the state of matter

New ultracapacitor delivers a jolt of energy at a constant voltage

WATER WORLD
US man points laser at Navy pilots, faces 20 years in prison

US challenges EU with rival airline tax talks

Darker wings for monarch butterflies mean better flight

US challenges EU with rival airline tax talks

WATER WORLD
Honda quarterly profit jumps fourfold to $1.7 bn

Nissan's profit down 15% on strong yen, Europe woe

Why Some Types Of Multitasking Are More Dangerous Than Others

Mechanical engineers develop an 'intelligent co-pilot' for cars

WATER WORLD
Chinese bids welcomed in $42 bn Australian asset sale

BHP warns of spending cuts as China cools

Driven by China sales, luxury goods buck economic slowdown

China's advantages counteract rising pay: analysts

WATER WORLD
Turkmenistan to plant huge forest in Aral Sea region

Taking Stock Of Georgia State Forests

Tropical arks reach tipping point

Forest carbon monitoring breakthrough in Colombia

WATER WORLD
exactView-1 satellite operational in orbit

IGARSS begins in Munich

Digitalglobe And Geoeye Combine To Create A Global Leader

Lockheed Martin Marks Landsat 40th Anniversary

WATER WORLD
A new era in modern analytical chemistry with Nano-FTIR

Entropy can lead to order, paving the route to nanostructures

Researchers Create Highly Conductive and Elastic Conductors Using Silver Nanowires

Silver nanoparticle synthesis using strawberry tree leaf




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement